Homework Set #6Machine learning and information measures

1. **Transfer Entropy :** Define the Transfer Entropy

$$\mathsf{TE}_{\mathcal{X}\to\mathcal{Y}}^{(k)}(t) = I\left(Y_t; X_{t-1}^{(k)} \middle| Y_{t-1}^{(k)}\right),\tag{1}$$

where $X_t^{(k)} := (X_t, X_{t-1}, ..., X_{t-k+1})$ is a notation for length-k history of a variable X up to time t.

Let $\{X_t\}$ and $\{Y_t\}$ be stationary and first-order Markov processes taking values from the binary alphabet:

• Process $\{X_t\}$ has a deterministic transitions from 0 to 1 or 1 to 0 each time step, i.e.

$$P(X_t|Y^{t-1}, X^{t-1}) = P(X_t|X_{t-1}), \quad P(X_t = x|X_{t-1} = x \oplus 1) = 1,$$
(2)

where $P(X_0) \sim \text{Bern}\left(\frac{1}{2}\right)$.

• Process $\{Y_t\}$ is a noisy observation of the last time step of $\{X_t\}$. Assume $\alpha \neq \frac{1}{2}$ and $0 < \alpha < 1$,

$$P(Y_t|Y^{t-1}, X^{t-1}) = P(Y_t|X_{t-1}), \quad P(Y_t = y|X_{t-1} = x) = \begin{cases} 1 - \alpha & \text{if } y = x \\ \alpha & \text{if } y \neq x \end{cases}.$$
(3)

Reminder: A stochastic process $\{X_t\}$ is said to be **stationary** if for every t_1, t_2 and h, the joint probability distribution function $P(X_{t_1}, X_{t_1+1}, ..., X_{t_1+h})$ is equal to $P(X_{t_2}, X_{t_2+1}, ..., X_{t_2+h})$, i.e., the joint probability distribution is invariant under time shifts.

- (a) **True / False** The described joint process $\{X_t, Y_t\}$ is stationary. Explain your answer.
- (b) **True / False** $P(Y_t = y, X_{t-1} = x) \neq P(X_t = x, Y_{t-1} = y).$
- (c) Calculate the Mutual Information between Y_t and X_{t-1} , i.e. $I(Y_t; X_{t-1})$. **Hint:** Consider to use the fact that $Y_t = X_{t-1} \oplus Z_{t-1}$, where $\{Z_t\}$ are i.i.d. Bern (α) .
- (d) **True / False** $I(Y_t; X_{t-1}) = I(X_t; Y_{t-1}).$
- (e) Show that the Transfer Entropy for $X \to Y$ with lag k = 1 is non-zero, i.e., $\mathsf{TE}_{\mathcal{X} \to \mathcal{Y}}^{(1)}(t) = I\left(Y_t; X_{t-1} | Y_{t-1}\right) > 0.$ **Hint:** Utilize the relation $Y_t = X_{t-1} \oplus Z_{t-1}$, and the fact that if $Z_1 \sim \operatorname{Bern}(\alpha)$ and $Z_2 \sim \operatorname{Bern}(\beta)$, then $Z_1 \oplus Z_2 \sim \operatorname{Bern}(\alpha - 2\alpha\beta + \beta)$.

(f) Calculate the Transfer Entropy for $Y \to X$ with lag k = 1, i.e., $\mathsf{TE}_{\mathcal{Y} \to \mathcal{X}}^{(1)} = I\left(X_t; Y_{t-1} \middle| X_{t-1}\right)$.

2. Auto-Encoders Let $\mathbf{X} \sim \mathcal{N}(\mu_x, \Sigma_x)$. We would like to create a generative model of \mathbf{X} .

- (a) Assume we use a simple autoencoder (not variational) and X is some single-dimensional random variable (i.e., the encoder $F : \mathbb{R} \to \mathbb{R}$ and so is the decoder $G : \mathbb{R} \to \mathbb{R}$). What would be the optimal choice of F and G for MSE-minimizing?
- (b) In this section we consider the linear case for a variational autoencoder and we will apply the reparametrization trick. We assume that X is m-dimensional. Let:

$$\mu_{z} = \begin{pmatrix} w_{1}^{\mathsf{T}} \mathbf{X} \\ \vdots \\ w_{d}^{\mathsf{T}} \mathbf{X} \end{pmatrix} + b, \qquad \Sigma_{Z} = A \cdot diag(\mathbf{X}), \qquad diag\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix}) = \begin{pmatrix} x_{1} & 0 & \dots & \dots & 0 \\ 0 & x_{2} & 0 & \dots & 0 \\ \vdots & 0 & x_{3} & \dots & 0 \\ 0 & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \dots & x_{m} \end{pmatrix}$$

with $w_i \in \mathbb{R}^m$ for $i = 1 \dots d$, $A \in \mathbb{R}^{d \times m}$ and $b \in \mathbb{R}^d$.

What is the distribution of μ_z ? What is the distribution of Z given a realization X = x? **Reminder**: if $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$ and Y = AX + b then $\mathbf{Y} \sim \mathcal{N}(A\mu + b, A\Sigma A^{\mathsf{T}})$.

(c) We now focus on the one-dimensional case. In class we had defined the following loss for the variational-autoencoder:

$$\mathcal{L} := \underbrace{\mathbb{E}_{q(z)}\left[\frac{(x-f(z))^2}{2c}\right]}_{:=\mathsf{MSE}} + \underbrace{D_{KL}(\mathcal{N}(g(x), h^2(x)), \mathcal{N}(0, 1))}_{:=\mathsf{D}}$$
(4)

where our goal is to apply $\min_{f,g,h} \mathcal{L}$. We define the functions as follows:

$$f(z) = z, \quad g(x) = \sum_{i=1}^{m} w_i x^i, \quad h(x) = \sum_{j=1}^{m} \exp(-u_j x)$$

Calculate $\frac{\partial MSE}{\partial w_i}$ for some general *i*.

(d) The KL-divergence between two Gaussians $G_1 = \mathcal{N}(\mu_1, \sigma_1^2)$ and $G_2 = \mathcal{N}(\mu_2, \sigma_2^2)$ is given by:

$$D_{KL}(G_1, G_2) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}.$$

Calculate $\frac{\partial \mathsf{D}}{\partial w_i}$ for some general *i*.

- (e) Given some fixed learning rate μ , write down the SGD update rule for the models weights $\{w_i\}_{i=1}^m$.
- (f) This section is independent of the previous ones. Assume we want to constraint our latent vector Z to have similar statistical characteristics as some other random vector Y. Propose a modification for the loss in (4) to obtain this request. Suggest a method to control how strongly we want to impose this constraint.
- 3. Loss Functions for Logistic Regression Models : Given two models, we want to select the best model in terms of the loss function. Both of the models are a logistic regression model, but with a different architecture. The models are created by a function $g(\cdot) \rightarrow [0, 1]$ as follows:

$$\hat{P}(y|x;w) = g\left(w_0 + \sum_{n=1}^M w_n \phi_n(x)\right),\,$$

where $x \in \mathbb{R}$ is the input of the model.

Model 1:
$$\phi_i^{(1)}(x) = \begin{cases} x^2 & i = 1\\ 0 & i > 1 \end{cases}$$
, Model 2: $\phi_i^{(2)}(x) = \begin{cases} x & i = 1\\ \cos(x) & i = 2\\ 0 & i > 2 \end{cases}$

- (a) Given N training samples $(x_i, y_i), i \in \{1, 2, ...N\}$, we evaluate the MSE risk function score of the two models. Which is better in terms of the risk function score? Model 1, model 2 or neither? Explain your answer.
- (b) Define the Baysian Information Criteria (BIC) as follows:

$$BIC = -2 \times LL(N) + \log(N) \times k,$$

where N is the number of samples, LL(N) is the log-likelihood as a function of N, and k is the number of parameters in the model. This criterion measures the trade-off between model fit and complexity of the model.

Let $LL_1(N)$ be the log-probability of the labels that model 1 predicted to N training samples, where the probabilities are evaluated at the maximum likelihood setting of the parameters. Let $LL_2(N)$ be the corresponding log-probability for model 2. We assume here that $LL_1(N)$ and $LL_2(N)$ are evaluated on the basis of the first N training examples from a much larger set.

Our empirical studies has shown that these log-probabilities are related in the next way:

$$LL_2(N) - LL_1(N) \approx 0.001 \times N.$$

How will we select between the two models, when using the BIC score , as a function of the number of training examples? Choose the correct answer.

- i. Always select model 1.
- ii. Always select model 2.
- iii. First select model 1. Then, for larger N, select model 2.
- iv. First select model 2. Then, for larger N, select model 1.
- (c) Provide an explanation for your last answer.
- (d) This section does not depend on the previous ones. Let $g(\cdot)$ be the Sigmoid function and consider the Binary Cross-Entropy loss function, where the labels, $\{y_i\}_{i=1}^N$, are 0 or 1. Suppose you use gradient descent to obtain the optimal parameters $\{w_i\}_{i=0}^M$ for each model. Give the update rule to each parameter for the two models.

4. **MINE**

(a) Suppose we are given with a set of i.i.d. samples from two random variables, $\{(x_i, y_i)\}_{i=1}^n$, where $(x_i, y_i) \sim P_{X,Y}$, $x_i, y_i \in \mathbb{R}$ and we attempt to estimate I(X;Y). The method is based on MINE $I_n(X,Y)$ as taught in class.

Which of the following experiment graphs is a possible description of the estimated MI during training (Figure 1)? Write the indices of the correct graphs in your solution and explain your choice.

- (b) Now, we wish to estimate the multivariate mutual information between the *d*-dimensional random vectors, (X^d, Y^d) , based on the algorithm and 1-dimensional samples presented in (4a), .
 - i. What criteria should the elements of $X^d, Y^d \in \mathbb{R}^d$ satisfy if we want to use the dateset given in question (4a)?
 - ii. What is the relation between the output of MINE and $I(X^d; Y^d)$ under this criteria and $n \to \infty$?

5. Variant of MINE

In this question we investigate an algorithm based on the mutual information neural estimator, using the following representation of mutual information:

$$I(X;Y) = H(X) + H(Y) - H(X,Y).$$
(5)

Figure 1: Experiments - filled line represents the model's loss and dashed line represents the true value.

Let $X \sim P_X$, $Y \sim P_Y$ and denote the joint PMF of (X, Y) by P_{XY} . Let U_X be the PMF of the uniform discrete probability measure over \mathcal{X} , the alphabet of X (namely, $U_X(x) = \frac{1}{|\mathcal{X}|} \quad \forall x \in \mathcal{X}$).

(a) Prove the following equality:

$$H(X) = H(P_X, U_X) - D_{KL}(P_X || U_X),$$
(6)

where $H(P_X, U_X)$ is the cross-entropy between P_X and U_X .

- (b) If we replace the uniform PMF U_X by an arbitrary PMF V_X , does Eq. (6) still hold? Prove or disprove it.
- (c) Based on the result of (a), prove the following equation:

$$I(X;Y) = D_{KL}(P_{XY} || U_{XY}) - D_{KL}(P_X || U_X) - D_{KL}(P_Y || U_Y),$$
(7)

where U_Y and U_{XY} are defined in the same sense as U_X , on \mathcal{Y} and $\mathcal{X} \times \mathcal{Y}$ respectively (assume that $|\mathcal{X} \times \mathcal{Y}| = |\mathcal{X}||\mathcal{Y}|$).

(d) Based on the KL divergence estimation method taught in class, propose an algorithm for the estimation of I(X;Y) from a sample set $\{(x_i, y_i)\}_{i=1}^n \sim P_{XY}$, based on the equality proved in (b). Denote by $\widehat{I}_n^{(H)}(X,Y)$:

- i. Write the optimization objective
- ii. Give a block diagram of the proposed algorithm for estimating $\widehat{I}_n^{(H)}(X, Y)$. Assume the neural network consists of a single hidden layer with M units.
- (e) We now wish to calculate the optimization objective $\widehat{I}_n^{(H)}(X,Y)$. For sufficiently large n, does the following hold? explain.

$$\widehat{I}_n^{(H)}(X,Y) \le I(X;Y) \tag{8}$$

6. Linear regression : Given training set $\{(x_i, y_i)\}_{i=1}^N$ where $(x_i, y_i) \in \mathbb{R}^2$.

First, we use a linear regression method to model this data, assume the model has no bias, i.e. b=0. To test our linear regressor, we choose at random some data records to be a training set, and choose at random some of the remaining records to be a test set. Now let us increase the training set size gradually.

- (a) As the training set size increases, what do you expect will happen with the mean training error? explain your answer.
- (b) As the training set size increases, what do you expect will happen with the mean test error? explain your answer.

Now we have prior knowledge of our dataset's distribution $y_i \sim \mathcal{N}(\log(wx_i), 1)$.

(c) We now perform a maximum likelihood estimation of w. Which of the following conditions is sufficient and necessary for a maximum likelihood estimation of w:

i.
$$\sum_{i} x_i \log(wx_i) = \sum_{i} x_i y_i \log(wx_i)$$

ii.
$$\sum_i x_i y_i = \sum_i x_i y_i \log(w x_i)$$

- iii. $\sum_{i} x_i y_i = \sum_{i} x_i \log(wx_i)$
- iv. $\sum_{i} y_i = \sum_{i} \log(wx_i)$
- (d) Provide a pseudocode (or a matlab code) for estimating w.