Resonant Switched Capacitor Converter with High Efficiency

Masahito Shoyama, Toshiyuki Naka, and Tamotsu Ninomiya
Graduate School of Information Science and Electrical Engineering,
Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan.
Email: shoyama@ees.kyushu-u.ac.jp

Abstract—Conventional switched capacitor converters have an inherent drawback that their efficiency is much decreased as the output current is increased. This inherent drawback is due to a periodical forced charging and discharging operation in the internal switched capacitors accompanied by a large capacitor current, so that their efficiency can not be increased by decreasing its internal resistance. As a result, conventional switched capacitor converters have been limited to be used with a very small output current.

This paper presents some novel switched capacitor converter topologies that use a resonant operation instead of the forced charging and discharging operation. Their advantage over conventional switched capacitor converters is a high efficiency even in a high output current region. The operation analysis and steady-state characteristics are described in detail for a half buck type switched capacitor converter, and they are confirmed by experiments.

I. INTRODUCTION

Switched capacitor converters (SCC's) have been used to realize small size and light weight DC-DC converters in many kinds of electronic devices. However, conventional switched capacitor converters have an inherent drawback that their efficiency is much decreased as the output current is increased. This inherent drawback is due to a periodical forced charging and discharging operation in the internal switched capacitors accompanied by a large capacitor current, so that their efficiency can not be increased by decreasing its internal resistance, e.g. conduction resistance of the switches. As a result, they are limited to be used with a very small output current.

This paper presents some novel switched capacitor converter topologies that use a resonant operation instead of the forced charging and discharging operation. Their advantage over conventional switched capacitor converters is a high efficiency even in a high output current region. The operation analysis and steady-state characteristics are described in detail for a half buck type switched capacitor converter, and they are confirmed by experiments. For a double boost type and a voltage inverting type SCC's, circuit topologies, analytical and experimental results are briefly shown in the last part in this paper.

II. CIRCUIT AND OPERATION ANALYSIS OF RESONANT SWITCHED CAPACITOR CONVERTER

Figure 1 (a) shows a conventional circuit topology of a half buck type SCC, which is the first and main example to apply the idea of resonant SCC. In this figure, every time S1 and S2 turns on alternately, a large pulse current flows through the capacitors C1 and C2 by a forced charging and discharging operation as shown in Fig.2. This large pulse current brings
about an inherent power loss at the internal resistance, e.g., conduction resistance of the switches. This power loss is inevitable and cannot be decreased even when the internal resistance is reduced. This is because the pulse current is much increased in that case.

Figure 1 (b), on the other hand, shows a novel circuit topology of a resonant SCC with a small resonant inductor L_r inserted to remove a large pulse current as shown in Fig. 2. C_1 operates as a resonant capacitor and C_2 is an output capacitor assumed to be very large, namely $C_1 << C_2$. Two active switches S_1 and S_2 are driven alternately with 50% duty ratio as shown in Fig. 3. Two diodes $S_1 (D_1)$ and $S_2 (D_2)$ are switched synchronously to S_1 and S_2, respectively. These diodes may be replaced by synchronous rectifiers of MOS-FET's in a low output voltage application.

Figure 4 (a) is an equivalent circuit for State I where S_1 and diode $S_1 (D_1)$ is on. Here, r_{s1} and r_{s2} denote the conduction resistance of S_1 and $S_2 (D_2)$, respectively. Figure 4 (b) is an equivalent circuit for State II where S_2 and diode $S_2 (D_2)$ is on. Here, r_{s3} and r_{s4} denote the conduction resistance of S_2 and $S_4 (D_4)$, respectively. Because of the small resonant inductor L_r, the charging and discharging current of C_1 becomes sinusoidal. So, a low power loss and a high efficiency are obtained when the internal resistance is reduced. Under the assumption $C_1 << C_2$ for simplifying the analysis, the switching frequency f_s is set to meet the relation:

$$f_s = \frac{1}{2\pi \sqrt{L_r C_1}}$$ \hspace{1cm} (1)

As long as this relation holds, S_1 and S_2 are switched when the inductor current i_{L_1} = 0.

As examples of operation, Fig. 5 shows simulated key waveforms of v_{ch}, v_o and i_{L1} for the conventional SCC, and Fig. 6 shows them for the proposed resonant SCC with L_r. Operation conditions and circuit parameters are shown in Table 1. In the conventional SCC, a very large pulse current flows through C_1 due to the periodical forced charging and discharging. On the other hand, in the proposed resonant SCC, C_1 and I_{L1} change sinusoidally.

By analyzing the circuit operation in detail, the efficiency η and the output voltage V_o are obtained for each SCC as shown in Table 2. For the conventional SCC, it is interesting to note that these expressions do not include any internal resistances. This means that the power loss is inevitable and cannot be decreased even when the internal resistance is reduced. For the proposed resonant SCC, on the other hand, it is found that the power loss can be decreased when the internal resistance is reduced.

Figure 7 (a) shows characteristics of the efficiency η as a function of the output current I_o taking the internal resistance r ($= r_{s1} = r_{s2} = r_{s3} = r_{s4}$) as a parameter. It is apparent that the proposed resonant SCC with L_r maintains a high efficiency.

Table 1. Common operation conditions and circuit parameters. L_r is used only for the resonant SCC. (Half-buck type)

<table>
<thead>
<tr>
<th></th>
<th>V_i</th>
<th>C_1</th>
<th>C_2</th>
<th>L_r</th>
<th>f_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5V</td>
<td>1uF</td>
<td>100uF</td>
<td>100nH</td>
<td>50kHz</td>
</tr>
</tbody>
</table>

Table 2. Analytical result of output voltage and efficiency. (Half buck type)

<table>
<thead>
<tr>
<th></th>
<th>Conventional SCC</th>
<th>Resonant SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_o</td>
<td>$\frac{1}{2} V_i \left(1 - \frac{I_o}{2V C_1 f_s}\right)$</td>
<td>$\frac{1}{2} V_i \left(1 - \frac{\pi^2}{2V r I_o}\right)$</td>
</tr>
<tr>
<td>η</td>
<td>$1 - \frac{I_o}{2V C_1 f_s}$</td>
<td>$1 - \frac{\pi^2}{2V r I_o}$</td>
</tr>
</tbody>
</table>
even when I_o increases, while the efficiency of the conventional SCC without L_r is much decreased. Figure 7 (b) shows characteristics of the output voltage V_o as a function of the output current I_o. It is noticed that the trend is very similar to Fig. 7 (a), and the output voltage V_o is not much reduced even when I_o increases in the resonant SCC with L_r.

III. EXPERIMENTAL VERIFICATION

In order to verify the validity of the analysis, we made experimental SCC circuits as shown in Fig. 8 (a), (b). For each SCC, two MOS-FET's are used for S_3 and S_4 as
Fig. 8. Experimental circuits of the half buck type SCC's.

Synchronous rectifiers to reduce the internal resistance of the switches. Figure 9 shows experimental waveforms for the conventional SCC, and Fig. 10 shows for the resonant SCC. In the conventional SCC, a small parasitic inductance is inserted in series with C_1. In the resonant SCC, on the other hand, a predicted sinusoidal waveform of V_{cl} is observed indeed.

Figure 11 (a) shows experimental results of the efficiency η and Fig. 11(b) shows the output voltage V_o as a function of the output current I_o. These experimental results agree well with the simulation results shown in Fig. 7. According to the experimental results the equivalent internal resistance r is estimated to be about 50mΩ. It is well confirmed by this figure that the proposed resonant SCC with L_r maintains a high efficiency even in a high output current region.

IV. APPLICATION TO OTHER TYPES OF SCC

The concept of resonant SCC can be applied to other types of SCC's. As typical examples, for a double boost type and a voltage inverting type SCC's, circuit topologies, analytical and experimental results are briefly shown in Fig's. 12-17 and Tables 3-6 in the following pages.

V. CONCLUSION

Some novel switched capacitor converter topologies that use a resonant operation have been presented. Their advantage over conventional switched capacitor converters is a high efficiency even in a high output current region. The operation analysis and steady-state characteristics have been described and confirmed by experiments.

ACKNOWLEDGMENT

This research was supported partly by the 21st Century COE Program "Reconstruction of Social Infrastructure Related to Information Science and Electrical Engineering."
Table 3. Analytical result of output voltage and efficiency.
(Double boost type)

<table>
<thead>
<tr>
<th>Voltage inverting type</th>
<th>Conventional SCC</th>
<th>Resonant SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_o</td>
<td>2V_i \left(1 - \frac{I_o}{2V_i C_i f_s}\right)</td>
<td>2V_i \left(1 - \frac{\pi^2}{2V_i} r I_o\right)</td>
</tr>
<tr>
<td>\eta</td>
<td>1 - \frac{I_o}{2V_i C_i f_s}</td>
<td>1 - \frac{\pi^2}{2V_i} r I_o</td>
</tr>
</tbody>
</table>

Table 4. Analytical result of output voltage and efficiency.
(Voltage inverting type)

<table>
<thead>
<tr>
<th>Voltage inverting type</th>
<th>Conventional SCC</th>
<th>Resonant SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_o</td>
<td>V_i \left(1 - \frac{I_o}{V_i C_i f_s}\right)</td>
<td>V_i \left(1 - \frac{\pi^2}{V_i} r I_o\right)</td>
</tr>
<tr>
<td>\eta</td>
<td>1 - \frac{I_o}{V_i C_i f_s}</td>
<td>1 - \frac{\pi^2}{V_i} r I_o</td>
</tr>
</tbody>
</table>
Table 5. Common operation conditions and circuit parameters.

L_r is used only for the resonant SCC. Value of r is used only for simulation, which is estimated to be about 50mΩ in experiments.

(Double boost type)

<table>
<thead>
<tr>
<th>V_i</th>
<th>C_1</th>
<th>C_2</th>
<th>L_r</th>
<th>$L_{51} = L_{52} = L_{53} = L_{54} = r$</th>
<th>f_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>1µF</td>
<td>100µF</td>
<td>100mH</td>
<td>20mΩ</td>
<td>50mΩ</td>
</tr>
</tbody>
</table>

Table 6. Common operation conditions and circuit parameters.

L_r is used only for the resonant SCC. Value of r is used only for simulation, which is estimated to be about 50mΩ in experiments.

(Voltage inverting type)

<table>
<thead>
<tr>
<th>V_i</th>
<th>C_1</th>
<th>C_2</th>
<th>L_r</th>
<th>$L_{51} = L_{52} = L_{53} = L_{54} = r$</th>
<th>f_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>1µF</td>
<td>100µF</td>
<td>100mH</td>
<td>20mΩ</td>
<td>50mΩ</td>
</tr>
</tbody>
</table>

Fig. 14. Simulated characteristics of η and V_o (Double boost type)

(a) Output current characteristics of efficiency

(b) Output current characteristics of output voltage

Fig. 15. Experimental characteristics of η and V_o (Double boost type)

(a) Output current characteristics of efficiency

(b) Output current characteristics of output voltage
Fig. 16. Simulated characteristics of η and V_o (Voltage inverting type)

Fig. 17. Experimental characteristics of η and V_o (Voltage inverting type)