Joint Segmentation of Image Ensembles via Latent Atlases

Tammy Riklin Raviv

Joint work with

Koen Van Leemput Bjoern H. Menze William M. Wells Polina Golland

Corpus collosum

Ventricles

Thalamus

Midbrain

Cerebellum

Brain stem

- Bottom up information: image intensities
- Top down information:
 Group: spatial probabilities
 other priors

Atlas based Segmentation

Probabilistic atlas (spatial prior) is obtained by averaging manual segmentations of a population.

Classical approaches

[1] J. Ashburner and K. Friston, Neuroimage 05

- [2] B. Fischl et al., Neuron 02
- [3] K. Pohl et al., Neuroimage 06
- [4] K. Van Leemput et al., IEEE TMI 99

Why not Use an Atlas?

Availability - manual segmentation is laborious.

Compatibility - e.g. lower resolution

Specificity - pathologies, pediatric

Why not Use an Atlas?

Availability - manual segmentation is laborious.

Compatibility - e.g. lower resolution

Specificity - pathologies, pediatric

[1] Bhatia et al., MICCAI 07[2] N.A. Lord, J. Ho, and B.C. Vemuri, ICCV 07

Notation

- $\Gamma = \{\Gamma_1 \dots \Gamma_N\}$
- $\Theta = \{\theta_{\Gamma}, \theta_{I,1}, \cdots, \theta_{I,N}\}$ unknown model parameters
- θ_{Γ} spatial parameters (latent atlas)
- $\{\theta_{I,1} \dots \theta_{I,N}\}$ Intensity (GMM) parameters

$$\{\hat{\Gamma}, \hat{\theta}\} = \arg \max_{\{\Gamma, \Theta\}} \sum_{n=1}^{N} [\log p(I_n | \Gamma_n, \theta_{I,n}) + \log p(\Gamma_n | \theta_{\Gamma})]$$

image likelihood term tissue labels term

$$\{\hat{\Gamma}, \hat{\theta}\} = \arg \max_{\{\Gamma, \Theta\}} \sum_{n=1}^{N} [\log p(I_n | \Gamma_n, \theta_{I,n}) + \log p(\Gamma_n | \theta_{\Gamma})]$$

image likelihood term tissue labels term

$$\hat{\Theta} = \arg \max_{\Theta} \sum_{\Gamma_1 \cdots \Gamma_N} p(I_1 \cdots I_N, \Gamma_1 \cdots \Gamma_N | \Theta).$$

17

$$\{\hat{\Gamma}, \hat{\theta}\} = \arg \max_{\{\Gamma, \Theta\}} \sum_{n=1}^{N} [\log p(I_n | \Gamma_n, \theta_{I,n}) + \log p(\Gamma_n | \theta_{\Gamma})]$$

image likelihood term tissue labels term

Alternate:

1. Solve N MAP problems:

$$\hat{\Gamma}_n = \arg \max_{\Gamma_n} \left[\log p(I_n | \Gamma_n, \theta_{I,n}) + \log p(\Gamma_n | \theta_{\Gamma}) \right]$$

2. Solve ML problems:

$$\hat{\theta}_{I,n} = \arg \max_{\theta_{I,n}} \log p(I_n | \Gamma_n, \theta_{I,n})$$
$$\hat{\theta}_{\Gamma} = \arg \max_{\theta_{\Gamma}} \sum_{n=1}^{N} \log p(\Gamma_n | \theta_{\Gamma})$$

$$\begin{split} \{\hat{\Gamma}, \hat{\theta}\} &= \arg \max_{\{\Gamma, \Theta\}} \sum_{n=1}^{N} [\log p(I_n | \Gamma_n, \theta_{I,n}) + \log p(\Gamma_n | \theta_{\Gamma})] \\ &\text{image likelihood term tissue labels term} \\ & & & & \\ &$$

Probabilistic view of the Level-set Framework

Level-set function $\phi \colon \Omega \to \mathbb{R}$

ROI boundary, zero level $C = \{ \mathbf{x} \in \Omega | \phi(\mathbf{x}) = 0 \}$

Probabilistic view of the Level-set Framework

Level-set function $\phi \colon \Omega \to \mathbb{R}$

ROI boundary, zero level $C = \{ \mathbf{x} \in \Omega | \phi(\mathbf{x}) = 0 \}$

0

Probabilistic view of the Level-set Framework

Level-set function $\phi \colon \Omega \to \mathbb{R}$

ROI boundary, zero level $C = \{ \mathbf{x} \in \Omega | \phi(\mathbf{x}) = 0 \}$

Probabilistic view of the Level-set Framework

Level-set function $\phi \colon \Omega \to \mathbb{R}$

ROI boundary, zero level $C = \{ \mathbf{x} \in \Omega | \phi(\mathbf{x}) = 0 \}$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_I \propto -\log p(I_n | \Gamma_n, \theta_{I,n})$$

image likelihood term

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + & E_S(\phi_n, \theta_{\Gamma}) + & E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_I \propto -\log p(I_n | \Gamma_n, \theta_{I,n})$$

image likelihood term

$$E_I = -w_I \sum_{n=1}^{V} [\log p_{in}(I_n; \theta_{I,n}) \Gamma_n^v + \log p_{out}(I_n; \theta_{I,n})(1 - \Gamma_n^v)]$$

v=1

$$\begin{split} E(\phi_1 \dots \phi_N, \Theta) &= \sum_{n=1}^N \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + & E_S(\phi_n, \theta_{\Gamma}) + & E_{LEN}(\phi_n) \end{bmatrix} \\ \text{Image likelihood} \quad & \text{Spatial atlas} \quad \text{Length} \\ E_I &\propto -\log p(I_n | \Gamma_n, \theta_{I,n}) \\ & \text{image likelihood term} \end{split}$$

$$E_I = -w_I \sum_{v=1}^{V} [\log p_{in}(I_n; \theta_{I,n}) \Gamma_n^v + \log p_{out}(I_n; \theta_{I,n}) (1 - \Gamma_n^v)]$$

$$E_{I} = -w_{I} \int_{\Omega} \left[\log p_{\text{in}}(I_{n}; \theta_{I,n}) \tilde{H}(\phi_{n}) + \log p_{\text{out}}(I_{n}; \theta_{I,n}) \tilde{H}(-\phi_{n}) \right] d\mathbf{x}$$
[Chan-Vese IEEE IP 01]

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$\begin{split} E(\phi_1 \dots \phi_N, \Theta) &= \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + & E_S(\phi_n, \theta_{\Gamma}) + & E_{LEN}(\phi_n) \end{bmatrix} \\ \text{Image likelihood} & \text{Spatial atlas} & \text{Length} \\ E_S \propto &- \Gamma_n^v \log \theta_{\Gamma}^v + (1 - \Gamma_n^v) \log (1 - \theta_{\Gamma}^v) \\ & \text{spatial (atlas) term} \end{split}$$

$$E(\phi_{1} \dots \phi_{N}, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_{I}(\phi_{n}, \theta_{I,n}) + E_{S}(\phi_{n}, \theta_{\Gamma}) + E_{LEN}(\phi_{n}) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{S} \propto -\Gamma_{n}^{v} \log \theta_{\Gamma}^{v} + (1 - \Gamma_{n}^{v}) \log(1 - \theta_{\Gamma}^{v})$$

spatial (atlas) term

$$E_{S} = -w_{S} \sum_{v=1}^{V} [\log(\theta_{\Gamma}^{v})\Gamma_{n}^{v} + (1 - \log\theta_{\Gamma}^{v})(1 - \Gamma_{n}^{v})]$$

$$\begin{split} E(\phi_1 \dots \phi_N, \Theta) &= \sum_{n=1}^N \left[\begin{array}{cc} E_I(\phi_n, \theta_{I,n}) + & E_S(\phi_n, \theta_{\Gamma}) + & E_{LEN}(\phi_n) \right] \\ \text{Image likelihood} & \text{Spatial atlas} & \text{Length} \\ E_S &\propto - \Gamma_n^v \log \theta_{\Gamma}^v + (1 - \Gamma_n^v) \log(1 - \theta_{\Gamma}^v) \\ & \text{spatial (atlas) term} \\ E_S &= -w_S \sum_{v=1}^V \left[\log(\theta_{\Gamma}^v) \Gamma_n^v + (1 - \log \theta_{\Gamma}^v)(1 - \Gamma_n^v) \right] \\ E_S &= -w_S \int_{\Omega} \left[\log \theta_{\Gamma}(\mathbf{x}) \tilde{H}(\phi_n(\mathbf{x})) + \log(1 - \theta_{\Gamma}(\mathbf{x})) \tilde{H}(-\phi_n(\mathbf{x})) \right] d\mathbf{x} \end{split}$$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_n^v, \Gamma_n^{\mathcal{N}(v)})$$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_n^v, \Gamma_n^{\mathcal{N}(v)})$$

where, $f(\Gamma_n^v, \Gamma_n^{v'}) = w_{v,v'} (\Gamma_n^v - \Gamma_n^{v'})^2$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_n^v, \Gamma_n^{\mathcal{N}(v)})$$

where, $f(\Gamma_n^v, \Gamma_n^{v'}) = w_{v,v'} (\Gamma_n^v - \Gamma_n^{v'})^2$

$$|\nabla K|^2 = K_x^2 + K_y^2 + K_z^2$$
 $K_x(v) \approx \frac{K_{i+1,j,k} - K_{i,j,k}}{h}$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_n^v, \Gamma_n^{\mathcal{N}(v)})$$

where, $f(\Gamma_n^v, \Gamma_n^{v'}) = w_{v,v'} (\Gamma_n^v - \Gamma_n^{v'})^2$

$$E_{LEN} = w_{LEN} \int_{\Omega} |\nabla \tilde{H}(\phi_n(\mathbf{x}))|^2 d\mathbf{x}$$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_n^v, \Gamma_n^{\mathcal{N}(v)})$$

where, $f(\Gamma_n^v, \Gamma_n^{v'}) = w_{v,v'} (\Gamma_n^v - \Gamma_n^{v'})^2$

$$\nabla K|^2 = K_x^2 + K_y^2 + K_z^2 \qquad K_x(v) \approx \frac{K_{i+1,j,k} - K_{i,j,k}}{h}$$
$$E_{LEN} = w_{LEN} \int_{\Omega} |\nabla \tilde{H}(\phi_n(\mathbf{x}))|^2 d\mathbf{x}$$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{LEN} = w_{LEN} \sum_{v}^{V} f(\Gamma_{n}^{v}, \Gamma_{n}^{\mathcal{N}(v)})$$

where, $f(\Gamma_{n}^{v}, \Gamma_{n}^{v'}) = w_{v,v'}(\Gamma_{n}^{v} - \Gamma_{n}^{v'})^{2}$
 $E_{LEN} = w_{LEN} \int_{\Omega} |\nabla \tilde{H}(\phi_{n}(\mathbf{x}))| d\mathbf{x}$

$$E(\phi_1 \dots \phi_N, \Theta) = \sum_{n=1}^{N} \begin{bmatrix} E_I(\phi_n, \theta_{I,n}) + E_S(\phi_n, \theta_{\Gamma}) + E_{LEN}(\phi_n) \end{bmatrix}$$

Image likelihood Spatial atlas Length

$$E_{I} = -w_{I} \int_{\Omega} \left[\log p_{\mathrm{in}}(I_{n}; \theta_{I,n}) \tilde{H}(\phi_{n}) + \log p_{\mathrm{out}}(I_{n}; \theta_{I,n}) \tilde{H}(-\phi_{n}) \right] d\mathbf{x}$$

$$E_S = -w_S \int_{\Omega} \left[\log \theta_{\Gamma}(\mathbf{x}) \tilde{H}(\phi_n(\mathbf{x})) + \log(1 - \theta_{\Gamma}(\mathbf{x})) \tilde{H}(-\phi_n(\mathbf{x})) \right] d\mathbf{x}$$

$$E_{\text{LEN}} = w_{LEN} \int_{\Omega} |\nabla \tilde{H}(\phi_n(\mathbf{x}))| d\mathbf{x}$$

Alternating Minimization Algorithm

Step 1: Estimation of the model parameters:

Fix the segmentations ϕ_n , estimate of the model Θ parameters :

For each image I_n estimate the intensity parameters:

$$P_{in}(I_n; \theta_{I,n}) = \mathbb{N}(I_n, \mu_n, \sigma_n^2)$$
$$p_{\text{out}}(I_n; \theta_{I,n}) = \text{GMM}(\mu_n^1 \dots \mu_n^K, \sigma_n^1 \dots \sigma_n^K, \lambda_n^1 \dots \lambda_n^K)$$

Estimate the spatial (latent atlas) parameters, ϕ_n given all the current segmentations:

$$\hat{\theta}_{\Gamma}(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \tilde{H}(\phi_n(\mathbf{x}))$$
39

Alternating Minimization Algorithm

Step 2: Evolution of the segmentations

Fix the model parameters Θ , evolve the level-set functions ϕ_n using the corresponding gradient descent equations:

$$\begin{aligned} \frac{\partial \phi_n}{\partial t} &= \tilde{\delta}(\phi_n) \{ w_I \left[\log p_{\text{in}}(I_n; \theta_{I,n}) - \log p_{\text{out}}(I_n; \theta_{I,n}) \right] + \\ w_{LEN} \quad \text{div} \left(\frac{\nabla \phi_n}{|\nabla \phi_n|} \right) + w_S \left[\log \theta_{\Gamma} - \log(1 - \theta_{\Gamma}) \right] \} \\ \tilde{\delta}(\phi_n) &\triangleq \tilde{\delta}_{\epsilon}(\phi_n) = \frac{d\tilde{H}_{\epsilon}(\phi_n)}{d\phi_n} \end{aligned}$$

Experiment I

Collaboration: Brigham & Women's Hospital, Harvard Medical School

Database:

The data set consists of 50 subjects:

17 schizophrenia patients ; 16 affective patients; 17 normal controls

6 cortical and sub-cortical structures (L+R):

Superior Temporal Gyrus ; Amygdala ; Hippocampus Y. Hirayasu *et al.*, Am J Psychiatry, 1998.

Registration (preprocessing):

Groupwise registration, free-form B-Spline deformation S. Balci *et al.*, MICCAI Statistical Registration Workshop, 2007

Segmentation Results

AMY

STG

Coronal

HPC

Axial

Latent Atlases

Experiment II

Collaboration: Mass. General Hospital, Harvard Medical School

Database :

The dataset consists of 39 MR brain scans of different subjects.

Some of the subjects in this set were diagnosed with mild

Alzheimer disease.

T1 MR images (1mm^3 ,1.5-T GE).

12 sub-cortical structures L+R Hemispheres:

Hippocampus (HPC), Thalamus (THL), Caudate (CAD), Putamen (PUT), Pallidus (PAD) and Amygdala (AMY).

Registration (preprocessing):

Asymmetric image template registration, M.R. Sabuncu *et al.*, MICCAI, 2009 44

Manual
AutomaticSegmentation Results

Segmentation Results

Automatic Segmentation

Latent Atlases

Latent atlases estimated by our method

Atlases generated by averaging sets of manual segmentations

Dice Measures: Right Hemisphere

Dice Measures: Right Hemisphere

Dice Measures: Left Hemisphere

50

Dice Measures: Left Hemisphere

Experiment III

Collaboration: German Cancer Research Center ; INRIA, France **Database :**

Single patient, multi-modal, longitudinal study of tumor growth. 44 image volumes of a patient with histologically confirmed low-grade glioma, acquired at 10 different time points. The volumes were acquired via six imaging protocols: T1, T2, FLAIR, DTI, and contrast-enhanced T1 sequences (T1gd).

Registration (preprocessing):

MedINRIA: Medical Image Navigation and Research Tool by INRIA. Toussaint et al. Proc. of MICCAI Workshop on Interaction in medical image analysis and Visualization.

Experiment III: Axial Tumor Slice and 3D Segmentation

T. Riklin-Raviv, B.H. Menze, K. Van Leemput , B. Stieltjes, M.A. Weber, N. Ayache, W. M. Wells and P. Golland Joint Segmentation using Patient specific Latent Anatomy Model, PMMIA 09

Manual Vs. Automatic Segmentation

T1

T2

DTI-FA

Latent Atlas

Manual Delineations

Automatic Segmentation

Time points

Van Leemput et al. IEEE TMI, 2001

Latent Atlas Concluding Remarks

Statistically driven level-set framework for group-wise segmentation of image ensembles.

The spatial parameters in the form of a latent atlas are estimated throughout the segmentation.

♦The latent atlas is used as a part of the model on the tissue labels.

Segmentation of Brain Structures

CAD

