Segmentation with Shape Priors

Tammy Riklin-Raviv

Joint work with Nahum Kiryati and Nir Sochen*

School of Electrical Engineering *Department of Applied Mathematics Tel-Aviv University

Bottom-up Segmentation

Clutter

Occlusion

Noise

Reflection

Prior based Segmentation

Prior image

To Segment

Riklin-Raviv, Kiryati, Sochen ECCV 04, ICCV 05, IJCV 06

Prior based Segmentation

Prior shape

To Segment

Riklin-Raviv, Kiryati, Sochen ECCV 04, ICCV 05, IJCV 06

Prior based Segmentation

Prior shape

Segmentation

Riklin-Raviv, Kiryati, Sochen ECCV 04, ICCV 05, IJCV 06

Mutual Segmentation

Riklin-Raviv, Sochen , Kiryati POCV 06

Mutual Segmentation

Riklin-Raviv, Sochen , Kiryati POCV 06

Symmetry-based Segmentation

Riklin-Raviv, Kiryati, Sochen CVPR 06

Symmetry-based Segmentation

Riklin-Raviv, Kiryati, Sochen CVPR 06

Talk Overview

- Level-sets formulation
- Shape representation
- Segmentation

Prior based segmentation

Mutual segmentation

Symmetry based segmentation

Talk Overview

Level-sets formulation

- Shape representation
- Segmentation
- Prior based segmentation
- Mutual segmentation

Symmetry based segmentation

Parametric Representation

Parameterization - Dependency

Self Intersections

The Level-set Approach

Osher & Sethian 1988

http://math.berkeley.edu/~sethian/level_set.html

The Level-set Approach

The original front. Front lies in x-y plane The level-set function. Front is intersection of surface and x-y plane

Osher-Sethian 1988

Dynamic Shape Representation

Active Contour

Evolving Level-Set Function

Image domain Ω Object domain $\omega \in \Omega$ Level-set function $\phi : \Omega \to \Re$ Embedded $C = \{ \mathbf{x} \in \Omega \mid \phi(\mathbf{x}) = 0 \}$ contour

Dynamic Shape Representation

Heaviside function

Object indicator function

Reguralized Heaviside and Delta Functions

$$H_{\varepsilon}(\phi) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan\left(\frac{\phi}{\varepsilon}\right) \right)$$

$$\delta_{\varepsilon}(\phi) = \frac{1}{\pi} \frac{\varepsilon}{\varepsilon^2 + \phi^2}$$

Dissimilarity Measure

Transformations

Talk Overview

- Level-sets formulation
- Shape representation
- Segmentation
- Prior based segmentation
- Mutual segmentation
- Symmetry based segmentation

Cost Functional

 $E(\phi, \mathbf{P}) = \int \text{Region based}$

+ Edge based

+ Shape

Region based Term

Piecewise constancy assumption

$$E_{RB}(u_{in}, u_{out}, C) = \int_{inside(C)} (I - u_{in})^2 d\mathbf{x} + \int_{outside(C)} (I - u_{out})^2 d\mathbf{x}$$

 $\int_{inside C} d\mathbf{x} \Rightarrow \int_{\Omega} H_{\varepsilon}(\phi) d\mathbf{x} \qquad \int_{outside C} d\mathbf{x} \Rightarrow \int_{\Omega} [1 - H_{\varepsilon}(\phi)] d\mathbf{x}$ $E_{RB}(u_{in}, u_{out}, \phi) = \int_{\Omega} [(I - u_{in})^2 H_{\varepsilon}(\phi) + (I - u_{out})^2 (1 - H_{\varepsilon}(\phi)] d\mathbf{x}$

Chan and Vese 2001

 $E(\phi, \mathbf{P}) = \int_{\Omega} \text{Region based} + \text{Smoothness+Edge based} + \text{Shape } d\mathbf{x}$

Region-based Term

Chan-Vese Two Phase Model Gradient descent equation (Euler Lagrange)

$$\frac{\partial \phi^{\text{RB}}}{\partial t} = \delta_{\varepsilon} (\phi) \Big[(I(\mathbf{x}) - u_{out})^2 - (I(\mathbf{x}) - u_{in})^2 \Big]$$

$$u_{in} = \frac{\int I(\mathbf{x}) H_{\varepsilon}(\phi) d\mathbf{x}}{\int H_{\varepsilon}(\phi) d\mathbf{x}} \quad u_{out} = \frac{\int I(\mathbf{x}) (1 - H_{\varepsilon}(\phi)) d\mathbf{x}}{\int (1 - H_{\varepsilon}(\phi)) d\mathbf{x}}$$

Smoothness Term

Geodesic Active Contour

 $E(\phi, \mathbf{P}) = \int_{\Omega} \text{Region based} + \text{Smoothness} + \text{Edge based} + \text{Shape } d\mathbf{x}$

$$E_{RA} = -\int_{\Omega} \left| \left\langle \nabla I, \frac{\nabla \phi}{|\nabla \phi|} \right\rangle \right| \nabla H_{\varepsilon}(\phi) | d\mathbf{x}$$

Talk Overview

Level-sets formulation

- Shape representation
- Segmentation

Prior based segmentation

Mutual segmentation

Symmetry based segmentation

Representation of the Prior shape Single View Geometry

 $\phi_{\rm prior}$

Cone of Rays

Representation of the Prior shape Two View Geometry

The homography $\mathbf{x'} = \left(R + \frac{1}{d} \operatorname{tn}^{\mathrm{T}}\right)\mathbf{x} = \mathbf{P}\mathbf{x}$

Gradient Descent Equations

$$E_{\text{shape}}(\phi) = \int_{\Omega} \left(\frac{H_{\varepsilon}(\phi) - H_{\varepsilon}(\widetilde{\phi}_{\mathbf{P}})}{\chi} \right)^2 d\mathbf{x}$$

Gradient descent equations:

$$\frac{\partial \phi}{\partial t} = -2\delta_{\varepsilon} \left(\phi \right) \left[H_{\varepsilon} (\phi) - H_{\varepsilon} (\widetilde{\phi}_{\mathbf{P}}) \right]$$

$$\frac{\partial p_{ij}}{\partial t} = \int_{\Omega} \delta_{\varepsilon} \left(\widetilde{\phi}_{\mathbf{P}} \right) \left[H_{\varepsilon} \left(\phi \right) - H_{\varepsilon} \left(\widetilde{\phi}_{\mathbf{P}} \right) \right] \frac{\partial \phi_{\mathbf{P}}}{\partial p_{ij}} d\mathbf{x}$$

Unified Cost Functional

$E(\phi, \mathbf{P}) = \int_{\Omega} \text{Region based} + \text{Smoothness+Edge based} + \text{Shape } d\mathbf{x}$

Evolution of ϕ

Registration

Results

Prior

Segmentation

ECCV-04, ICCV05 Riklin-Raviv, Kiryati, Sochen

Results

Prior Image

Initial contour

Final (desired) segmentation

Verification: Final contour on transformed prior

Ort

Prior contour on image

Segmentation without prior

Prior Image

Initial contour

Final (desired) segmentation

Verification: Final contour on transformed prior

Prior contour on image

Segmentation without prior

Image to segment

Region based segmentation

Prior image

ICCV05 Riklin-Raviv, Kiryati, Sochen

Talk Overview

Level-sets formulation

- Shape representation
- Segmentation
- Prior based segmentation

Mutual segmentation

Symmetry based segmentation

Problem setting

- Two views of the same object are given
- Their contours are related by planar projective transformation
- Each object cannot be segmented based on image data alone
- Together both images contain sufficient information for the extraction of the objects

Shape constraint

Alternately evolve the level set functions of the two object

instances using both images data.

Evolve ϕ_1 based on the data of image I_1 and on ϕ_2 . Evolve ϕ_2 based on the data of image I_2 and on ϕ_1 .

There is an inherent ambiguity in regions where the two object views disagree.

Biased dissimilarity measure D(,) = $D(\chi, \widetilde{\chi}_{\mathbf{P}}) = \int (\chi(\mathbf{x}) - \widetilde{\chi}_{\mathbf{P}}(\mathbf{x}))^2 d\mathbf{x} \cong \int \chi(\mathbf{x}) \oplus \widetilde{\chi}_{\mathbf{P}}(\mathbf{x}) d\mathbf{x}$ $D_{biased}\left(\chi,\widetilde{\chi}_{P}\right) = \int \left[(1-\chi)\cdot\widetilde{\chi}_{P} + \eta \chi\cdot(1-\widetilde{\chi}_{P}) \right] d\mathbf{x}$ $0 < \eta < 1$ ${\mathcal X}$ $\widetilde{\chi}_{\mathtt{P}}$ Currently evolved Superposition Aligned reference shape

Biased dissimilarity measure D(,) = $D(\chi, \widetilde{\chi}_{\mathbf{P}}) = \int (\chi(\mathbf{x}) - \widetilde{\chi}_{\mathbf{P}}(\mathbf{x}))^2 d\mathbf{x} \cong \int \chi(\mathbf{x}) \oplus \widetilde{\chi}_{\mathbf{P}}(\mathbf{x}) d\mathbf{x}$ $D_{biased}(\chi, \tilde{\chi}_{P}) = \int [(1-\chi) \cdot \tilde{\chi}_{P} + \eta \chi \cdot (1-\tilde{\chi}_{P})] d\mathbf{x}$ $1 < \eta$ $\widetilde{\chi}_{\mathtt{P}}$ Currently evolved Superposition Aligned reference shape

Unified Cost Functional

$$E(\phi, \mathbf{P}) = \int_{\Omega} \operatorname{Region} \operatorname{based} + \operatorname{Edge} \operatorname{based} + \operatorname{Alignment} + \operatorname{Shape} d\mathbf{x}$$
$$E_{Shape} \left(\phi \middle| \widetilde{\phi}, \mathbf{P} \right) = \int_{\Omega} \left[\left(1 - H_{\varepsilon}(\phi) \right) H_{\varepsilon}(\widetilde{\phi}_{\mathbf{P}}) + \eta H_{\varepsilon}(\phi) \left(1 - H_{\varepsilon}(\widetilde{\phi}_{\mathbf{P}}) \right) \right] d\mathbf{x}$$
$$\widetilde{\phi}_{\mathbf{P}} = \widetilde{\phi} \left(\mathbf{P} \mathbf{x} \right)$$

The contribution of the shape term to ϕ $\phi_t^{Shape} = \delta_{\varepsilon}(\phi) [H(\tilde{\phi}_{\rm P}) - \eta (1 - H(\tilde{\phi}_{\rm P}))]$

Recovery of the transformation parameters:

$$\frac{\partial p_{i,j}}{\partial t} = \int_{\Omega} \delta(\widetilde{\phi}_{\mathbf{p}}) \left[\left(1 - H(\phi) \right) - \eta H(\phi) \right] \frac{\partial \widetilde{\phi}_{\mathbf{p}}}{\partial p_{i,j}} d\mathbf{x}$$

Initial contour

Superposition

Mutual segmentation

Initial contour

Superposition

Mutual segmentation

Initial contour

Initial contour

Superposition

Mutual segmentation

Mutual segmentation

Mutual segmentation

Self segmentation

Initial contour

Final contour

Initial contour

Final contour

Talk Overview

Level-sets formulation
 Shape representation
 Segmentation

Prior based segmentation

Mutual segmentation

Symmetry based segmentation

Shape Symmetry The Prior is Inside

Symmetry as Shape Constraint

Symmetry as Shape Constraint

Original image

Color-based segmentation

Symmetrical Counterparts

Symmetrical $\hat{\phi}(t)$ Evolving level-set function $\phi(t)$ Segmentation χ is symmetrical when $\chi = \hat{\chi}$ $\chi(\mathbf{x}) = H_{\varepsilon}(\phi(\mathbf{x}))$ $\hat{\boldsymbol{\chi}}(\mathbf{x}) = H_{\varepsilon}(\boldsymbol{\phi}(S\mathbf{x}))$

Symmetry Matrices

$$S_{LR} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad S_{UD} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $S_{ROT} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$ Rotation $S_{Tx} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \qquad S_{Ty} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$ Translation

Symmetrical Counterparts

Theoretical Results: The Recovery of P from M

The Transformation between Symmetrical Counterparts

The Transformation between Symmetrical Counterparts

Examples

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ v_1 & v_2 & 1 \end{bmatrix} \qquad M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2v_1 & 0 & 1 \end{bmatrix}$$

Examples

$$\mathbf{H} = \begin{bmatrix} R(\theta) & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} K & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \qquad K = \begin{bmatrix} k_1 & k_2 \\ 0 & 1/k_1 \end{bmatrix} \qquad M = \begin{bmatrix} k_1^2 & k_1 k_2 & 0 \\ k_1 k_2 & 1/k_1^2 + k_2^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Limits on the Recovery of P from M

P is symmetry preserving if I(PSX) = I(SPX)

P cannot be recovered from *M* if $\mathbf{P} = \mathbf{P}^* \widetilde{\mathbf{P}}$ and \mathbf{P}^* is a symmetry preserving transformation.

$$M = S^{-1}\mathbf{P}^{-1}S\mathbf{P} = S^{-1}(\mathbf{P}^*\widetilde{\mathbf{P}})^{-1}S(\mathbf{P}^*\widetilde{\mathbf{P}}) = S^{-1}\widetilde{\mathbf{P}}^{-1}\mathbf{P}^{*-1}S\mathbf{P}^*\widetilde{\mathbf{P}} = S^{-1}\widetilde{\mathbf{P}}^{-1}S\widetilde{\mathbf{P}} = S^{-1}\widetilde{\mathbf{P}}^{-1}S\widetilde{\mathbf{P}}$$

Unified Cost Functional

 $E(\phi, \mathbf{M}) = \int_{\Omega} \operatorname{Region} based + \operatorname{Edge} based + \operatorname{Smoothness} + \operatorname{Symmetry} d\mathbf{x}$

$$E_{\text{Symmetry}}(\phi, M) = H_{\varepsilon}(\phi)(1 - H_{\varepsilon}(\hat{\phi}_{M})) + \eta H_{\varepsilon}(\hat{\phi}_{M})(1 - H_{\varepsilon}(\phi))$$

The contribution of the symmetry term to
$$\phi$$

 $\phi_t = \delta_{\varepsilon}(\phi) = [H_{\varepsilon}(\hat{\phi}_M) - \eta(1 - H_{\varepsilon}(\hat{\phi}_M))]$

Gradient descent equations for M

$$\frac{\partial m_{i,j}}{\partial t} = \int_{\Omega} \delta_{\varepsilon}(\hat{\phi}_{M}) [(1 - H_{\varepsilon}(\phi)) - \eta H_{\varepsilon}(\phi)] \frac{\partial \hat{\phi}_{M}}{\partial m_{i,j}} d\mathbf{x}$$

Symmetry-aided segmentation

Region-Edge based segmentation

Initial contour

Region-Edge based segmentation

Symmetry-aided segmentation

Original image courtesy of Amit Jayant Deshpande

Initial contour

Region-Edge based segmentation

Symmetry-aided segmentation

Final level-set function

Original image courtesy of George Payne

Initial contour

Region-Edge based segmentation

Symmetry-aided segmentation

Original image courtesy of Richard Lindley
Symmetry Results

Symmetry-aided segmentation

Original image courtesy of Kenneth R. Robertson

Symmetry Results

Initial contour

Symmetry-aided Segmentation: 1 symmetrical counterpart

Region-Edge based segmentation

Symmetry-aided Segmentation: 2 symmetrical counterparts

Symmetry Results

Region-Edge based segmentation

Symmetry-aided

Original image courtesy of Allen Matheson

Summary

Segmentation using a prior shape in the presence of perspective distortion

Mutual segmentation of two object views

Supporting segmentation by perspectively distorted symmetry

