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Bottom-up Segmentation
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Prior based Segmentation
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Prior image To Segment
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Prior based Segmentation

Prior shape To Segment
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Prior based Segmentation

Prior shape Segmentation

Riklin-Raviv, Kiryati, Sochen ECCV 04, ICCV 05, IJCV 06



Mutual Segmentation
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Mutual Segmentation
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Parametric Representation
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The Level-set Approach

Level-set function ¢ :Q2 — N

Embedded contour C= {xEQ | ¢(x)=0}
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Osher & Sethian 1988
http:/ /math.berkeley.edu/~sethian/level_set.html



The Level-set Approach
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The level-set function.
Front is intersection of surface
and x-y plane

The original front.
Front lies in x-y plane

Osher-Sethian 1988



Dynamic Shape Representation

Active Contour Evolving Level-Set Function
Image domain G2 Level-set function ¢ - Q —=M
Object domain ) & €2 Embedded C = {X c0 ‘ ¢(X) 0 }
contour



Dynamic Shape Representation
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Reguralized Heaviside and Delta

Functions

Smooth approximation of the Heaviside function
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Delta: The derivative of the Smooth approximation of the Heaviside function

-y Sy

[ ——

(O P .

g g S g

O ——

i -

cteabhecccctacccnnan

g S P

1F--------

4

Jp----e---

2F----e---

1.5

-0.5



Dissimilarity Measure
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Cost Functional
E(¢, P) = f Region based @ . .c

Q
+ Smoothness {:} ., Q
+ Edge based ‘]

+ Shape




Region based Term

Piecewise constancy assumption @ . .

ERB(uin9u0ut9c) = f(] _uin )zdx-l- f(] _uout )2 dX
inside(C) outside(C)
[ dx=[H,(p)dx [ dx= fli-H,(p)ux

ERB (uin o U 9¢) =f[(1 —u, )2H€ (¢) + (] _uout)z(l — Hg (¢)]dX

Chan and Vese 2001

E(¢,P) = f Region based|+ Smoothness+Edge based + Shape dX
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Region-based Term

Chan-Vese Two Phase Model
Gradient descent equation (Euler Lagrange)
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Smoothness Term
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VH(g)
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Geodesic Active Contour

Ecyc =fg(‘V[DdS
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Alignment Term
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Prior Shape Term
B )= [, 9~ (@) ax

D(m ) =/ ._f

Ly [

#(x) = H,(¢() %(Px)=H,(4)
E(p,P) = f + Smoothness+Edge based + dx
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Representation of the Prior shape

world plane




Gradient Descent Equations

Eshape (¢) =f(Hg (¢) - Hg (51)))2611)(
t Xp
Gradient descent equations:
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Unified Cost Functional

E(p,P) = f Region based + Smoothness+Edge based + Shape dX
Q

Evolution of ¢ Registration



Prior Segmentation
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Results

Prior Image Initial contour

Verification: Prior contour on image
Final contour on

transformed prior

Segmentation without
prior



Results

—8 % _%

Prior Image Initial contour Final (desired) segmentation

Verification:
Final contour on transforme
prior

d Prior contour on image Segmentation without prior



Image to segment




Region based segmentation




Misalignment Prior image
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Problem setting

ﬂ

Two views of the same object are given
Their contours are related by planar projective transformation

Each object cannot be segmented based on image data alone

Together both images contain sufficient information for the extraction of

the objects



Shape constraint

P

-2

-1
P2—>1 = P1—>2

? ?,

Alternately evolve the level set functions of the two object
instances using both images data.
Evolve ¢1 based on the data of image [ ; and on ¢2 :

Evolve ¢2 based on the data of image [ , andon ¢1 :



There is an inherent ambiguity in regions where the
two object views disagree.

disagreement

disagreement




Biased dissimilarity measure

D(x. 0 ) = [(x(0) = %o (0) dx = [ (0@ Z, (x)dx

Dbiased()(9)?1>)=f[ (1_)()°)N(P +77 X’(I_QN{P) ]dX
; \ O<np<l

X

Currently evolved Superposition Aligned reference shape



Biased dissimilarity measure
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Unified Cost Functional

E(p,P) = f Region based + Edge based + Alignment + Shape dXx

Egpe @16, P) = [(1-H,0) H.G) 711, )1 -H, %))
51) = J(PX)
The contribution of the shape term to ¢
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Mutual Segmentation Results
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Initial contour Superposition
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Mutual segmentation



Mutual Segmentation Results

Self segmentation
Mutual segmentation



Mutual Segmentation Results

Initial contour Initial contour
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Mutual Segmentation Results
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Mutual segmentation

TSR

Self segmentation
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Mutual Segmentation: Results

Initial contour

Final contour




Mutual Segmentation: Results

Initial contour

Final contour
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Shape Symmetry

The Prior i1s Inside




Symmetry as Shape Constraint

q

/

\
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Symmetry as Shape Constraint

Original image Color-based segmentation
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Distorted segmentation | | Symmetrical counterpart Registration




Symmetrical Counterparts

Segmentation

X is symmetrical

when )(=)A(

Evolving level-set Symmetrical ~

function ¢(¢) counterpart @(7)

x(x) = H,(¢(x)) x(x) = H,(4(5x))



Symmetry Matrices
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Symmetrical Counterparts

Segmentation

M is a planar projective
Homography.

Sisa 3x3 matrix.

Evolving level-set Symmetrical ~

function ¢(¢) counterpart @(7)
M

n

x(x) = H,(¢(x)) x(x) = H,(4(5x))




Theoretical Results:
The Recovery of P from M
I [, =1-P fP=]PoS
P S
xd hd RS
Symmetrical with Distorted by the \/

The symmetrical
respect to S Homography P

counterpart of | ”

M=S"P'SP




The Transtormation between
Symmetrical Counterparts
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The Transtormation between
Symmetrical Counterparts
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Limits on the Recovery of P
from M

P issymmetry preserving if 1(PSX) = I(SPX)

'L

P cannot be recovered from A if P=P'P
and p* isasymmetry preserving transformation.

M=S"P'SP=S"(PP)'S(PP)=S"P'P SPP =

x=l__%

STP'PTP'SP=S"P'SP



Unified Cost Functional

E(p,M) = fRegion based + Edge based +Smoothness +Symmetrydx
Q

Eqgpn (M) = H (9)(1 - H,(9,,)) +nH (¢,)1 - H,(9))

The contribution of the symmetry term to ¢

& =0.(p) =[H () -n(1-H, ($,))]

Gradient descent equations for M
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Symmetry Results

Initial contour Region-Edge based Symmetry-aided
segmentation segmentation



Symmetry Results

Initial contour

Region-Edge based Symmetry-aided
segmentation segmentation

Original image courtesy of Amit Jayant Deshpande




Symmetry Results

Initial contour Region-Edge based Symmetry-aided
segmentation segmentation
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Symmetry Results

Initial contour Region-Edge based Symmetry-aided
segmentation segmentation

Original image courtesy of Richard Lindley




Symmetry Results

Symmetry-aided segmentation

Original image courtesy of Kenneth R. Robertson




Symmetry Results

Symmetry-aided Symmetry -aided
Segmentation: 1 symmetrical counterpart Segmentation: 2 symmetrical counterparts



Symmetry Results

Region-Edge based segmentation Symmetry-aided

Original image courtesy of Allen Matheson




Summary

Segmentation using a prior shape in the

presence of perspective distortion
Mutual segmentation of two object views

Supporting segmentation by perspectively

distorted symmetry
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