

Statistical Shape Analysis for Population Studies via Level-set based Shape Morphing

Tammy Riklin Raviv Yi Gao James Levitt Sylvain Bouix

Psychiatry Neuroimaging Laboratory Department of Psychiatry Brigham and Women's Hospital Harvard Medical School

Motivation

NC

Motivation

NC

STG of First Episode Schizophrenics

Objective

 Detect, Locate and Quantify spatial morphological differences between two shape populations (e.g. healthy controls and patients).

Shape Representations and Related Methods

- Surface representation: methods such as SPHARM-PDM. Require one-to-one correspondences. [Styner 2004]
- Medial representation: more compact. Similar challenges. [Bouix 2005]
- Feature vectors: Robust but not intuitive.
 [Reuter 2006 (Shape DNA), Niethammer 2007]

Method Outlines

- Surface representation: Signed Distance Transform
- Shape metric: modified Hausdorff distance -> does not require point-to-point correspondence.
- Shape Alignment: Align shape using 12-affine transformation by minimizing shape distances.
- Shape morphing: construct mean shape via level-set framework by minimizing shape distances.
- Shape statistics: Find statistically significant differences by calculating the signed distances to the mean shape.

Method Outlines

- Surface representation: Signed Distance Transform
- Shape metric: modified Hausdorff distance -> does not require point-to-point correspondence.
- Shape Alignment: Align shape using 12-affine transformation by minimizing shape distances.
- Shape morphing: construct mean shape via level-set framework by minimizing shape distances.
- Shape statistics: Find statistically significant differences by calculating the signed distances to the mean shape.

Shape Representation

A shape S_i is defined by the image region $\omega_i \in \Omega$ that corresponds to the structure of interest. S_i is represented by its signed distance function (SDF) : $\phi_{S_i} : \Omega \to \mathbb{R}$

such that the Eikonal equation $|\nabla \phi_{S_i}| = 1$ holds.

May 8, 2013

Shape Representation

A shape S_i is defined by the image region $\omega_i \in \Omega$ that corresponds to the structure of interest. S_i is represented by its signed distance function (SDF) :

$$\phi_{S_i} \colon \Omega \to \mathbb{R}$$

such that the Eikonal equation $|\nabla \phi_{S_i}| = 1$ holds.

May 8, 2013

Shape Representation

A shape S_i is defined by the image region $\omega_i \in \Omega$ that corresponds to the structure of interest. S_i is represented by its signed distance function (SDF) : $\phi_{S_i} : \Omega \to \mathbb{R}$

such that the Eikonal equation $|\nabla \phi_{S_i}| = 1$ holds.

We define the distance between S_i and S_j by the modified symmetrical Hausdorff distance between their boundaries:

$$\mathbf{dist}(S_i, S_j) = \int_{\partial \omega_i} |\phi_{S_j}| d\mathbf{x} + \int_{\partial \omega_j} |\phi_{S_i}| d\mathbf{x}$$

We define the distance between S_i and S_j by the modified symmetrical Hausdorff distance between their boundaries:

$$\mathbf{dist}(S_i, S_j) = \int_{\partial \omega_i} |\phi_{S_j}| d\mathbf{x} + \int_{\partial \omega_j} |\phi_{S_i}| d\mathbf{x}$$

We define the distance between S_i and S_j by the modified symmetrical Hausdorff distance between their boundaries:

$$\mathbf{dist}(S_i, S_j) = \int_{\partial \omega_i} |\phi_{S_j}| d\mathbf{x} + \int_{\partial \omega_j} |\phi_{S_i}| d\mathbf{x}$$

$$D_{H}(X,Y) = \max\{\sup_{x \in X} \inf_{y \in Y} \mathbf{d}(x,y), \sup_{y \in Y} \inf_{x \in X} \mathbf{d}(x,y)\}$$

$$D_{mH}(X,Y) = \sum_{x \in X} \inf_{y \in Y} \mathbf{d}(x,y) + \sum_{y \in Y} \inf_{x \in X} \mathbf{d}(x,y)$$

$$\lim_{y \in Y} \inf_{x \in X} \mathbf{d}(x,y) = \sum_{x \in X} \inf_{y \in Y} \mathbf{d}(x,y) + \sum_{y \in Y} \inf_{x \in X} \mathbf{d}(x,y)$$

May 8, 2013

-10

-15

-20

-25

-30

-35

$$\mathbf{dist}(S_i, S_j) = \int_{\partial \omega_i} |\phi_{S_j}| d\mathbf{x} + \int_{\partial \omega_j} |\phi_{S_i}| d\mathbf{x}$$

Mean Shape

We define the mean S^M of a shape ensemble $\{S_1 \dots S_N\}$ as the shape that minimizes the sum of the distances from all the shapes in the set:

$$\hat{S}^M = rg\min_{S^M} \sum_{i=1}^N \mathbf{dist}(S_i \circ \hat{T}_{i,M}, S^M),$$

where $T_{i,M}$ is the estimated affine (12 parameters) transform that aligns a shape S_i to the mean shape.

Alignment of shapes

Alignment of Shapes

Alignment of Shapes

Alignment of Shapes

Smoothed Heaviside function

May 8, 2013

Level set Framework

$$\begin{split} & \int_{\partial\omega_i} \to \int_{\Omega} |\nabla H_{\epsilon}(\phi_{S_i})| \\ \mathbf{dist}(S_i, S_j) = \int_{\partial\omega_i} |\phi_{S_j}| d\mathbf{x} + \int_{\partial\omega_j} |\phi_{S_i}| d\mathbf{x} \end{split}$$

 $\mathbf{dist}(S_i, S_j) = \int_{\Omega} [|\nabla H_{\epsilon}(\phi_{S_i})| |\phi_{S_j}| + |\nabla H_{\epsilon}(\phi_{S_j})| |\phi_{S_i}|] d\mathbf{x}$

$$H_{\epsilon}(\phi) = \frac{1}{2} \left(1 + \tanh\left(\frac{\phi}{2\epsilon}\right) \right) = \frac{1}{1 + e^{-\phi/\epsilon}}$$

May 8, 2013

$$H_{\epsilon}(\phi) = \frac{1}{2} \left(1 + \tanh\left(\frac{\phi}{2\epsilon}\right) \right) = \frac{1}{1 + e^{-\phi/\epsilon}}$$

$$H_{\epsilon}(\phi) = \frac{1}{2} \left(1 + \tanh\left(\frac{\phi}{2\epsilon}\right) \right) = \frac{1}{1 + e^{-\phi/\epsilon}}$$

$$H_{\epsilon}(\phi) = \frac{1}{2} \left(1 + \tanh\left(\frac{\phi}{2\epsilon}\right) \right) = \frac{1}{1 + e^{-\phi/\epsilon}}$$

Mean Shape Initialization

Mean Shape Morphing

$D(S^M, \{S_i\}) = \sum_i \int_{\Omega} \left[|\phi_{S^M}| |\nabla H_{\epsilon}(\phi_{S_i})| + \|\phi_{S_i}| |\nabla H_{\epsilon}(\phi_{S^M})| \right] d\mathbf{x}$

Mean Shape Morphing

$$D(S^M, \{S_i\}) = \sum_i \int_{\Omega} \left[|\phi_{S^M}| |\nabla H_{\epsilon}(\phi_{S_i})| + \|\phi_{S_i}| |\nabla H_{\epsilon}(\phi_{S^M})| \right] d\mathbf{x}$$

$$\hat{\phi}_{S^M} = \arg\min_{\phi_{S_M}} D(S^M, \{S_i\})$$

Mean Shape Morphing

$$\begin{split} & \widehat{\phi}_{SM} = \arg\min_{\phi_{S_M}} D(S^M, \{S_i\}) \end{split}$$

$$\phi_t^M = \sum_{\text{May 8, 2013}} \left[\text{sign}(\phi_{S^M}) |\nabla H_{\epsilon}(\phi_{S_i})| + \delta_{\epsilon}(\phi_{S^M}) \text{div}\left(\frac{\nabla \phi_{S^M}}{|\nabla \phi_{S^M}|} |\phi_{S_i}| \right) \right]_{31}$$

Population 1:
$$\phi_{S_1}^{sz}, \dots, \phi_{S_N^{sz}}^{sz}$$

Population 2: $\phi_{S_1}^{nc}, \dots, \phi_{S_N^{nc}}^{nc}$

For each voxel on the boundary of the mean shape calculate:

$$\vec{d}^{\rm sz}(\mathbf{x}) = \{ d(\mathbf{x} \in \partial \omega^M, \partial \omega_1^{\rm sz}), \dots, d(\mathbf{x} \in \partial \omega^M, \partial \omega_N^{\rm sz}) \}$$

$$\vec{d}^{\rm nc}(\mathbf{x}) = \{ d(\mathbf{x} \in \partial \omega^M, \partial \omega_1^{\rm nc}), \dots, d(\mathbf{x} \in \partial \omega^M, \partial \omega_N^{\rm nc}) \}$$

Population 1:
$$\phi_{S_1}^{sz}, \dots, \phi_{S_N^{sz}}^{sz}$$

Population 2: $\phi_{S_1}^{nc}, \dots, \phi_{S_N^{nc}}^{nc}$

For each voxel on the boundary of the mean shape calculate:

$$\vec{d}^{\rm sz}(\mathbf{x}) = \{ d(\mathbf{x} \in \partial \omega^M, \partial \omega_1^{\rm sz}), \dots, d(\mathbf{x} \in \partial \omega^M, \partial \omega_N^{\rm sz}) \}$$
$$= \{ \phi_{S_1}^{\rm sz}(\mathbf{x}), \dots \phi_{S_N^{\rm sz}}^{\rm sz}(\mathbf{x}) \}$$
$$\vec{d}^{\rm nc}(\mathbf{x}) = \{ d(\mathbf{x} \in \partial \omega^M, \partial \omega_1^{\rm nc}), \dots, d(\mathbf{x} \in \partial \omega^M, \partial \omega_N^{\rm nc}) \}$$
$$= \{ \phi_{S_1}^{\rm nc}(\mathbf{x}), \dots \phi_{S_N^{\rm nc}}^{\rm nc}(\mathbf{x}) \}$$

May 8, 2013

For each voxel on the boundary of the mean shape apply the

two-sample t-test on $\vec{d}^{\rm sz}({\bf x})$ and $\vec{d}^{\rm nc}({\bf x})$.

The p-value threshold is determined by using

For each voxel on the boundary of the mean shape apply the

two-sample t-test on $\vec{d}^{\rm sz}({\bf x})$ and $\vec{d}^{\rm nc}({\bf x})$.

The p-value threshold is determined by using

For each voxel on the boundary of the mean shape apply the

two-sample t-test on $\vec{d}^{\rm sz}({\bf x})$ and $\vec{d}^{\rm nc}({\bf x})$.

The p-value threshold is determined by using

For each voxel on the boundary of the mean shape apply the

two-sample t-test on $\vec{d}^{\rm sz}({\bf x})$ and $\vec{d}^{\rm nc}({\bf x})$.

The p-value threshold is determined by using

Shape Analysis Algorithm

<u>Input:</u> two populations of shapes (e.g. brain structures). <u>Algorithm:</u>

- 1. Use probability maps of the SDTs to initialize the mean shape
- 2. Iterate
- a. Align the shapes represented by their SDTs by minimizing the modified Hausdorff distances (mHDs).
- b. Morph the mean shape to minimize the mHDs to the shape ensemble.
- 3. Calculate the signed distances between the mean shape surface to each shape in the two populations.
- 4. Use two-sample t-test to find statistically significant differences between the two populations.
 - Use False Discovery Rate (FDR) to correct for multiple comparisons.
- <u>Output:</u> Highlighted regions on the mean shape surface for which statistically significant differences were found.

Results: Synthetic Amygdala-Hippocampus Complexes

Bump databases

Results: Synthetic Amygdala-Hippocampus Complexes

Dimple databases

Results: Synthetic Amygdala-Hippocampus Complexes

Radius of deformation

Results: Synthetic Striatum

Gao, Y., Bouix, S., October 2012. Synthesis of realistic subcortical anatomy with known surface deformations. In: MICCAI Workshop on Mesh Processing in Medical Image Analysis.

Results: Synthetic Striatum

Shape Analysis of First-episode Schizophrenics

- Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects Y. Hirayasu et. al. Am J Psychiatry 1998
- Planum temporale and heschl's gyrus volume reduction in schizophrenia: A MRI study of first-episode patients Y. Hirayasu *et. al.* Arch Gen Psychiatry 2000
- Hippocampus and superior temporal gyrus volume in first-episode schizophrenia Y. Hirayasu et. al. Arch Gen Psychiatry 2000

Results: Left STG of First Episode Schizophrenics

Mean left STG

Mean left STG with p-values color map

Results: Caudate of Schizotypal Personality Disorder (SPD) Subjects

Mean right caudate with p-values color map

May 8, 2013

Summary and Future Work

- Detection, localization and quantification of shape Deformations for population studies.
- One-to-one point correspondences are not require!
- -> Low computational complexity; robustness
- Intuitive output
- Handles shapes with complicated morphology
- Does not require pre-processing such as smoothing.
- Next step:
- Incorporate the concept of boundary/surface uncertainty within the analysis.

Summary and Future Work

- Detection, localization and quantification of shape Deformations for population studies.
- One-to-one point correspondences are not require!
- -> Low computational complexity; robustness
- Intuitive output
- Handles shapes with complicated morphology
- Does not require pre-processing such as smoothing.
- Next step:
- Incorporate the concept of boundary/surface uncertainty within the analysis.

