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Objective

* Detect, Locate and Quantify spatial
morphological differences between two

shape populations (e.g. healthy controls
and patients).
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Shape Representations and
Related Methods

* Surface representation: methods such as
SPHARM-PDM. Require one-to-one
correspondences. [Styner 2004]

* Medial representation: more compact.
Similar challenges. [Bouix 2005]

e Feature vectors: Robust but not intuitive.

[Reuter 2006 (Shape DNA), Niethammer
2007]
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Method Outlines

= Surface representation: Signed Distance Transform

» Shape metric: modified Hausdorff distance ->
does not require point-to-point correspondence.

= Shape Alignment: Align shape using 12-affine
transformation by minimizing shape distances.

= Shape morphing: construct mean shape via level-set
framework by minimizing shape distances.

= Shape statistics: Find statistically significant
differences by calculating the signed distances to the
mean shape.
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Shape Representation

A shape S; is defined by the image region w; € {2

that corresponds to the structure of interest.

S; is represented by its signed distance function (SDF) :
os,: 1 =R

such that the Eikonal equation [V¢gs.| =1 holds.

8&)7;
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Shape Representation

A shape S; is defined by the image region w; € {2
that corresponds to the structure of interest.

S; is represented by its signed distance function (SDF) :
¢Si =R

such that the Eikonal equation [V¢gs.| =1 holds.
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Distance Between Shapes

We define the distance between §; and S

by the modified symmetrical Hausdorff distance

between their boundaries:

dist(51,5)) = [ loslax+ [ los
Wi Ow;

0

dx
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Distance Between Shapes

We define the distance between §; and §;
by the modified symmetrical Hausdorff distance

between their boundaries:

dist(Sz-,Sj):/ \gbsj\dx-l-/
80«)7; 8(,03'

Dy (X,Y) = max{sup inf d(x,y), sup inf d(z,y)} ’
reX YEY yey t€X

DmH(X,Y):meda:y —I—medxy g

S4 reX .
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Distance Between Shapes

diSt(SZ', Sj) — /

0

65, |dx + / 65, dx
Ws Ow

S;
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Mean Shape

We define the mean S of a shape ensemble {S; ... Sy}
as the shape that minimizes the sum of the distances

from all the shapes in the set:
N
SM — argmin Y dist(S; o Tj s, SM),

SM
1=1

where 1; ur is the estimated affine (12 parameters)

transform that aligns a shape S; to the mean shape.
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Alignment of shapes

S; S

A

T ar = arg min dist(.5; o 15 ar, SM)

T M
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Smoothed Heaviside function

.

08

06F

04r

May 8, 2013



Level set Framework

/&% %/Q‘VHG(¢S¢)‘

diSt(Si, SJ) — /

8%-

85, |dx + / 65, |dx
&uj

dist(S;, S ) = / [V H, (63,)||6s, | + [VHe (b3, )] 65, ]1dx
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From SDT to Probability Map

H€(¢)
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From SDT to Probability Map
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From SDT to Probability Map
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From SDT to Probability Map
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Mean Shape Initialization




Mean Shape Morphing

S X S 7 &5
et o o &2

DS {5:}) = Y [ (5w lIVH(65.)| + |05,V He(00)]] dx



Mean Shape Morphing

S X S 7 &L
et o o &2

DS {5:}) = Y [ (5w lIVH(65.)| + |05,V He(00)]] dx

¢25M — arg min D(SM, {S;})
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Mean Shape Morphing

S &EH B o
E &7 &FF s B
D(S™ {S;}) = Z/ |osm |[[VH(bs,)| + ||os, || VH(Pgm)|] dx

dgn = argmin D(SM, {S;})

Sy

ot =3 sign( )| VH.(65)] + 0c(6su0)div (Do los, |)]



Localization of shape differences
between populations

Population 1: ¢SSZN L ¢Sst

Population 2: ¢r§31, Ce e ¢SNnc

For each voxel on the boundary of the mean shape calculate:

& (x) = {d(x € ™M, 0w), ..., d(x € dw™, Hw))

d*(x) = {d(x € ™, 0wi), .. d(x € ™, Dwi)}
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Localization of shape differences
between populations

Population 1: ¢SSZN L ¢Sst

Population 2: ¢r§31, Ce e ¢SNnc

For each voxel on the boundary of the mean shape calculate:
— {¢Sszl( ) ¢5st( )}
d(x) = {d(x € o™, 0we), ..., d(x € O™, 0w)}

= 105, (%), -+ 05 ne (X))
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Localization of shape differences
between populations

For each voxel on the boundary of the mean shape apply the

—

two-sample t-test on (J** (X) and Jﬁc (X) :
The p-value threshold is determined by using

False Discovery Rate (FDR) to correct for multiple comparisons
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Shape Analysis Algorithm

Input: two populations of shapes (e.g. brain structures).
Algorithm:

1. Use probability maps of the SDTs to initialize the mean shape
2. lterate

a. Align the shapes represented by their SDTs by minimizing the modified
Hausdorff distances (mHDs).

b. Morph the mean shape to minimize the mHDs to the shape ensemble.

3. Calculate the signed distances between the mean shape surface to each
shape in the two populations.

4. Use two-sample t-test to find statistically significant differences between
the two populations.
= Use False Discovery Rate (FDR) to correct for multiple comparisons.

Output: Highlighted regions on the mean shape surface for which statistically
significant differences were found.
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Results: Synthetic Amygdala-
Hippocampus Complexes

Bump databases

3 Voxels 4 5 Voxels 6 Voxels
Voxels
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Results: Synthetic Amygdala-
Hippocampus Complexes

Dimple databases

7777

3 Voxels 5 Voxels 6 Voxels
Voxels
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Ratio of SS voxels
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Results: Synthetic Amygdala-
Hippocampus Complexes

3 4 5 6

Radius of deformation
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Results: Synthetic Striatum

"

l

I

Deformed

Mean striatum with
P-value color map

Control

Gao, Y., Bouix, S., October 2012. Synthesis of realistic subcortical anatomy with known surface
deformations. In: MICCAI Workshop on Mesh Processing in Medical Image Analysis.
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Results: Synthetic Striatum




Shape Analysis of First-episode
Schizophrenics

= Lower left temporal lobe MRI volumes in patients with first-episode
schizophrenia compared with psychotic patients with first-episode affective
disorder and normal subjects Y. Hirayasu et. al. Am J Psychiatry 1998

= Planum temporale and heschl's gyrus volume reduction in schizophrenia: A
MRI study of first-episode patients Y. Hirayasu et. al. Arch Gen Psychiatry 2000

=  Hippocampus and superior temporal gyrus volume in first-episode
schizophrenia Y. Hirayasu et. al. Arch Gen Psychiatry 2000
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Results: Left STG of First Episode

Schizophrenics
[VFHanunwj}::::>
Temporale
AN

| \
" d Heschl's
'y Gyrus \

Mean left STG Mean left STG with
p-values color map
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Results: Caudate of Schizotypal
Personality Disorder (SPD) Subjects

Mean right caudate with
p-values color map
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Summary and Future Work

Detection, localization and quantification of shape
Deformations for population studies.

One-to-one point correspondences are not require!

-> Low computational complexity; robustness

Intuitive output

Handles shapes with complicated morphology

Does not require pre-processing such as smoothing.

Next step:

Incorporate the concept of boundary/surface uncertainty
within the analysis.
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-> Low computational complexity; robustness

Intuitive output

Handles shapes with complicated morphology

Does not require pre-processing such as smoothing.

Next step:
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Thank you!
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