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Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain devel-
opment, and summarize observations from a representative sample of individuals. Collecting a suffi-
ciently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly
developing structures is challenging but necessary for large population studies and clinical application.
We propose a method for the semi-supervised learning of a spatio-temporal latent atlas of fetal brain
development, and corresponding segmentations of emerging cerebral structures, such as the ventricles
or cortex. The atlas is based on the annotation of a few examples, and a large number of imaging data
without annotation. It models the morphological and developmental variability across the population.
Furthermore, it serves as basis for the estimation of a structures’ morphological age, and its deviation
from the nominal gestational age during the assessment of pathologies. Experimental results covering
the gestational period of 20–30 gestational weeks demonstrate segmentation accuracy achievable with
minimal annotation, and precision of morphological age estimation. Age estimation results on fetuses
suffering from lissencephaly demonstrate that they detect significant differences in the age offset com-
pared to a control group.

� 2013 Published by Elsevier B.V.
1. Introduction

The analysis of the early development of a fetus in utero offers
rich insights into the genesis of human anatomy. In particular, the
emerging cerebral morphology is of both clinical and academic
interest. The advance of novel imaging methods, such as ultra-fast
Magnetic Resonance Imaging (MRI), allows for high-resolution im-
age acquisition in utero (Garel, 2004) and the observation of the ra-
pid fetal cerebral development. Fig. 1 shows an example of the
developing brain from 20th to 30th gestational weeks (GW).

Even though fetal MRI provides a wealth of information, clinical
assessment is typically performed qualitatively (Ghai et al., 2006).
Both, clinicians and researchers need models capturing the devel-
opmental characteristics and variability in a large population. They
can serve as basis for the study of developmental paths in healthy
and patient groups, and as reference during quantitative assess-
ment of individual cases in a clinical setting. One possible solution
are spatio-temporal models and corresponding segmentations of
brain structures learned from large numbers of in vivo data. A main
limitation of this approach is the difficulty of acquiring complete
annotation for a sufficiently large number of cases. We propose
to learn a model or atlas of the development of a fetal anatomical
structure as a latent spatio-temporal prior that connects the seg-
mentations across subjects at different gestational ages. Starting
from a small set of annotated cases, we learn segmentations for a
large population together with spatio-temporal priors that link
segmentation and gestational age.

The need to perform quantitative group-wise studies in neuro-
imaging has motivated intense research aiming at establishing
accurate correspondences across individuals and labeling anatom-
ical regions in the brain. In studies investigating the adult brain,
this is typically achieved by an annotated atlas that serves as
reference template (Fischl et al., 2002, 2004; Smith et al., 2004;
Woolrich et al., 2009; Ashburner, 2007). Each individual is
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Fig. 1. A consistently positioned coronal slice of different individuals illustrating the cerebral development at GW 20, 22, 24, 26, 28, 30 (from left to right).
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registered to the template, and coordinates and region labels such
as Brodmann areas (Brodmann, 1909) are transferred accordingly.
Templates and reference spaces range from the single subject
Talairach template (Talairach and Tournoux, 1988), to the Mon-
treal Neurological Institute (MNI) space with a template based on
larger control cohorts (Evans et al., 1993; Mazziotta et al., 1995).
Aside from transferring labels to new subjects, an atlas can also re-
veal characteristics of the population it is build from. Examples are
population studies based on voxel-based morphometry or shape
analysis to detect differences between adult subject groups (Ash-
burner and Friston, 2000; Karas et al., 2003), or fetal cohorts (Ghol-
ipour et al., 2012). Davis et al. (2007) performed kernel regression
to capture spatio-temporal characteristics of the aging human
adult brain from MR scans. A similar method using an adaptive
kernel was published by Serag et al. (2012) for the developing
brain. Spatio-temporal atlases detected developmental speed dif-
ferences in two chimpanzee species (Durrleman et al., 2009,
2010). Aljabar et al. (2011) reported results on manifold learning
as representation of a neonatal dataset, and Kuklisova-Murgasova
et al. (2010) introduced an atlas for the developing brain from
pre-term infants between the 29th and 44th GW. Encouraging re-
sults for fetal data covering a period from GW 20 to 24 were re-
ported in Habas et al. (2010), where the authors presented a
spatio-temporal atlas for a dataset of 20 fetal brains imaged in ute-
ro by T2-weighted MRI. Spatio-temporal tensor-based volume
morphometry was proposed to study the sulcal formation of fetal
brains (Rajagopalan et al., 2011). In a recent paper by Gholipour
et al. (2012), a spatio-temporal atlas facilitated fetal brain MRI seg-
mentation of patients and normal controls for the detection of ven-
tricle atrophies due to pathologies. Fishbaugh et al. (2012)
introduce an interesting approach that learns an atlas of the popu-
lation via shape regression. In addition, subject-specific growth
trajectories are estimated. To measure shape variability, the gener-
ic model is warped to individual subjects using diffeomorphic
mapping. In their experiments, they analyzed the growth scenario
of two different population groups. Results were reported on both
a synthetic and a clinical dataset. Latent atlases have been pro-
posed to connect segmentations in multi-modal imaging data of
pathologies, such as brain-tumors (Riklin-Raviv et al., 2009). The
latent atlas is learned from partially annotated imaging data to
capture the varying representation of tissue properties across
modalities. It learns potentially different segmentations in all
modalities and a latent prior that represents the tumor presence
across the registered imaging data. While Riklin-Raviv et al.
(2009) accounts for variability across the data, it does not incorpo-
rate parameters such as time, or age, that might have a systematic
effect on the shape, or distribution of anatomical structures. Time
is crucial when observing developmental processes or disease pro-
gression. Its effect can be substantial, and the integration of param-
eters that have a characteristic effect is conceptually different from
random variability in a population.

In this paper, we propose a method to build a spatio-temporal
latent atlas capturing the development characteristics of cerebral
structures during early human brain development. Instead of
exhaustive annotation of anatomical structures, it simultaneously
learns a spatio-temporal latent atlas and segmentations of
individual structures based on a small number of annotated exam-
ples, and a large number of examples without annotation. We refer
to this as a semi-supervised approach as opposed to fully-super-
vised approaches that use annotations on all examples, such as
the leave-one-out experiments in Habas et al. (2010) or Gholipour
et al. (2012). To connect the atlas with individual imaging data, we
use a statistically-driven level-set segmentation framework. It
translates the prior or uncertainty shared across the data as the lo-
gistic function of the corresponding level-set values, similar to Pohl
et al. (2007). The spatio-temporal latent atlas is a probabilistic
prior or map of the presence of an anatomical structure as a func-
tion of location and gestational age (GA). We use kernel regression
for a continuous representation of the temporal domain, allowing
the interpolation for GA that are not represented in the training
dataset. Initial results were reported in Dittrich et al. (2011). The
resulting four-dimensional atlas links the segmentations, and rep-
resents the cross-sectional component of variability in the popula-
tion for a specific age, and the developmental gradient of the
structure along the age axis. This is visualized in Fig. 2 for the per-
iod between GW 20 and 30. The gradient of the spatio-temporal at-
las can be regarded as measure of uncertainty in two ways. In
Fig. 2(a), the variability among cases of the same age is depicted
as the local spatial gradient of the atlas at the surface boundary.
Red areas are regions of high variability among the subjects, the
gradient is low in these areas since segmentations are dissimilar
across subjects. Yellow corresponds to relatively stable areas with
a high local gradient of the prior. Fig. 2(b) shows the gradient of the
atlas along its longitudinal axis at the structure surface. Red areas
are expanding, blue areas are shrinking.

The atlas has several uses: it can serve as reference to represent
characteristic development and its variability in a population, it
can be used to identify deviations from a healthy population quan-
titatively, and it is a prerequisite for group-studies of the fetal
development such as (Schöpf et al., 2012a,b), since it provides
the means to establish correspondences across subjects, and age.
Finally, it allows for estimating a morphological age, by matching
individuals to the atlas along the age axis.

The remainder of this paper is structured as follows. In Section 2,
we introduce the dataset and preprocessing methods followed by
an in-depth explanation of the methodology. We define the prob-
lem, and detail methods for the learning of the latent atlas, and
its use for morphological age estimation. In Sections 3 and 4 we
present and discuss our experimental results in detail, and Sec-
tion 5 closes with a conclusion and outlook.

2. Material and methods

2.1. Study data collection

This work is part of an ongoing collaboration with neuroradiol-
ogists and anatomists specialized on fetal MRI assessment. We
took advantage of two distinct datasets. The first includes 32 fetal
MR images of singleton pregnancies depicting the brain between
GW 20 and 30 were retrospectively investigated. Cases suspicious
for cardiac abnormalities, complex syndromes or chromosomal
abnormalities were excluded from this study. The second dataset



Fig. 2. Visualization of the (a) spatial and (b) temporal component of the spatio-temporal atlas for the lateral ventricles of the fetal brain (frontal horns pointing upwards,
occipital horns downwards) covering GW 20–30 (ages are indicated for each column). (a) The spatial gradient of the atlas dg(l)/dx for each point x of the template surface.
Red indicates areas of high variability among the subjects at this time point, whereas yellow corresponds to areas relatively similar across the population. (b) The longitudinal
gradient of the atlas dg(l)/dl. Red areas correspond to a high positive gradient, i.e., local expansion of ventircular size, while blue areas indicate negative gradient, i.e.,
reduction in ventricular size. Yellow areas are static. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Number of cases per GW. The dataset containing the healthy cases is shown
in black, whereas the lissencephaly cases are depicted in gray.
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contains MR images of 12 fetuses diagnosed with lissencephaly
which is a certain type of malformations of the cortical develop-
ment. The age distribution of both patient groups is shown in
Fig. 3.

MRI acquisition. Data was acquired with a single-shot, fast spin-
echo T2-weighted MRI sequence. The images are captured by a 1.5
Tesla Philips Gyroscan superconducting unit during clinical rou-
tine. In-plane resolution was 0.78–0.9 pixels per mm, slice thick-
ness 3–4.4 mm, acquisition matrix 256 � 256, field of view 200–
230 mm, SAR < 100%/4.0 W/kg, image acquisition time 6 20 s, TE
100–140 ms, TR 9000–19,000 ms. During image acquisition, nei-
ther the fetus nor the mother were sedated. The preparation of
the sequences, as well as planning of exact orthogonal orientations
(axial, coronal, sagittal views of the fetus), was guided either by an
anatomist or an experienced fetal radiologist, both with substantial
expertise in the field of fetal neuroimaging, being present at each
examination.

Preprocessing. We constructed 32 isotropic 3D volumes by
merging three images per patient that were acquired in axial, coro-
nal and sagittal planes. The high resolution (HR) volumes were
reconstructed using the Baby Brain Toolkit (BTK) by Rousseau
et al. (2011), resulting in an isotropic voxel size between 0.78
and 0.9 mm, and an image resolution of 225 � 288 � 302 voxels.
An initial coarse alignment among the HR images was achieved
based on the positions of the eyes and the position where the skull
ends (occipital foramen magnum). In a subsequent step, the HR data
was further registered using a registration tool (Klein et al., 2010).
First, we rigidly registered the images to achieve a better align-
ment. Additionally, we performed a subsequent affine and spa-
tio-temporal non-rigid registration using B-splines with a control
point spacing of 32 pixels. To this end, we non-rigidly registered
each case to its corresponding age-specific template. The age-spe-
cific template is composed as a weighted sum of gray-scale vol-
umes, where the weights are given by the age, as described in
Eq. (9). We evaluated the segmentation of the ventricles and cortex
on both the rigid data set DR, as well as the spatio-temporal non-
rigid data set DNR.

Manual segmentations. Standard of reference segmentations
were generated by a physician specialized on fetal neuroradiology,
who manually annotated the ventricles in all images using ITKsnap
(Yushkevich et al., 2006). In this paper, the word annotation stands
for a manually generated label, whereas segmentation refers to an
automatic labeling of the region of interest, by the proposed
algorithm.
2.2. Problem definition

Our primary goal is the construction of a spatio-temporal atlas g
as probabilistic prior for the presence of an anatomical structure in
space as a function of age l. It models the development of a normal
fetal brain within a continuous time period during gestation. Fig. 4
gives an overview of the proposed method. The input to our model
is a set of N three dimensional MR scans I1, . . ., IN of healthy fetal
brains of different individuals. We assume that the images are
co-aligned, and that each image In : X! Rþ (X � R3) is assigned
a corresponding nominal age ln 2 [lmin; lmax].

Let {C1, . . ., CN} be the binary segmentations corresponding to
the images {I1, . . ., IN}, where Cn: X ? {0, 1}V, and V is the number
of voxels in the image. In the proposed formulation each Cn parti-
tions the image domain X into the region of interest (ROI) xn and
the background Xnxn such that the set {xn} defines the spatial
locations of a particular anatomical structure across the ensemble.
Let us also assume that a small fraction k� N of the segmentations
is given and can be used for training. Extraction of the remaining
(unknown) segmentations {Ck+1, . . ., CN} is essential for the infer-
ence of the spatio-temporal atlas g: X ? [0, 1] and a significant
goal of itself. We emphasise that g is derived from the entire pop-
ulation and covers a continuous age range l 2 [lmin, lmax].

Let f(In) = Fn define a vector function of the image intensities In

such that Fn(x, y, z) is a feature vector of size d of the voxel located
at (x, y, z). We assume that Cn generates Fn with probability p(Fnj
Cn; h), where h is a set of parameters that model the image inten-
sity features of the entire set. We also assume that given g, the seg-
mentations {Cn} are conditionally independent and are drawn



Fig. 4. Schematic overview of the proposed method. Starting with a subset of annotations, the spatio-temporal atlas and the segmentation for all images are initialized. Then,
the atlas is re-estimated based on the current segmentations, and in an alternating manner, the segmentations are refined based on the current spatio-temporal atlas. After
the first iteration of segmentation refinement and atlas building, the estimation of each subject’s morphological age (Fig. 5) can be integrated at the position denoted by ⁄.
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from a probability distribution based on the age matched atlas
p(Cn; g, ln).

The proposed framework consists of two parts: training and
testing. During training, the model parameters related to the image
intensities, h are inferred using the known segmentations {C1, . . .,
Ck} and their corresponding images {I1, . . ., Ik}. Specifically h are the
parameters of a Random Forest (RF) classifier (Breiman, 2001).
Here, we make an explicit assumption that the RF parameters are
consistant across the image dataset. At the test phase, both the la-
tent atlas g, and the unknown segmentations {Cn} are jointly opti-
mized as follows:

fĝ; Ĉg ¼ arg max
fg;Cg

log pðF1 . . . FN;C1 . . . CN ;g;l; hÞ: ð1Þ

Using the conditional independence of Fn we get:

fĝ; Ĉg ¼ arg max
fg;Cg

XN

n¼1

log pðFn;Cn;g;ln; hÞ: ð2Þ

For a fixed value of ĝ, Eq. (2) implies that the segmentations can be
estimated by solving N � k separate MAP problems:

bCn ¼ arg max
Cn

log pðFnjCn; hÞ þ log pðCn;g;lnÞ
� �

; ð3Þ

where

log pðFn;Cn; g;ln; hÞ ¼ log pðFnjCn; hÞ þ log pðCn; g;lnÞ: ð4Þ

We then fix Ĉ and estimate g(l) for each l assigned to the given im-
age set.

ĝ ¼ arg max
g

XN

n¼1

log pðCn;g;lnÞ: ð5Þ

As we will show in the following, the proposed spatio-temporal
model g generalizes the latent atlas approach introduced in Riklin-
Raviv et al. (2010).

2.3. Generalized image likelihood model

In Riklin-Raviv et al. (2010) the image intensities were modeled
by Gaussian mixtures were each voxel is represented by a single
scalar – its intensity. Here, a feature vector is assigned to each of
the image voxels and an RF classifier is constructed, which allows
to discriminate between ROI and background feature vectors. Let v
be a voxel located at (x, y, z) and let Fn(x, y, z) be its associated fea-
ture vector, we will denote by pin the probability that (x, y, z) 2x
and by pout the probability that (x, y, z) 2Xnx based on the RF clas-
sifier. The image likelihood term gets the form:

log pðFnjCn; hÞ ¼
X

fvjCv
n¼1g

log pin Fv
n ; h

� �
þ

X
fv jCv

n¼0g
log pout Fv

n ; h
� �

; ð6Þ
2.4. The spatio-temporal latent atlas

The construction of the spatio-temporal atlas that links the seg-
mentations of the training images and the corresponding nominal
ages is the main component of the proposed framework. Consider
the set of pairs {(C1, l1) . . . (CN, lN)} where Cn is the current esti-
mate of the segmentation of In and ln is the nominal age of subject
n. Note that ln 2 [lmin; lmax] and is not necessarily uniformly sam-
pled. Hence, in order to construct a comprehensive and time-con-
tinuous atlas that represents reliably the entire age-range [lmin;
lmax], including ages that are associated with very few (or none
at all) examples in the training set, we use a non-parametric tech-
nique known as kernel regression. Specifically, we express g(ln) by
the conditional expectation of Cn and ln that stand for the depen-
dent and the independent variables, respectively:

EðCnjlnÞ ¼ gðlnÞ:

We then use the Nadaraya–Watson estimator (Nadaraya, 1964;
Watson, 1964) to rewrite g(l⁄) for a specific age l⁄ as the weighted
sum of the segmentations:

ĝðl�Þh ¼
PN

n¼1Khðl� � lnÞCnPN
n¼1Khðl� � lnÞ

; ð7Þ

with K being a kernel with a bandwidth h. Note that the spatio-
temporal atlas g is four dimensional as it is also defined over a con-
tinuous time domain. However, in practice we estimate the atlas for
a set of discrete time points that correspond to the GAs of the asso-
ciated examples (or the training set), or for the test sample age,
when using the atlas to segment a new case. We therefore use
the notation g(l) to define the 3D template of the GA l. g(ln)
denotes the atlas at the age of subject n in the training set, g(l⁄) de-
notes the atlas at the specific age l⁄. Let K be a Gaussian kernel,
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then the latent atlas estimate can then be rewritten (similar to Da-
vis et al. (2007); Kuklisova-Murgasova et al. (2010)) as follows:

ĝðl�Þ ¼ 1
Wl�

XN

n¼1

w�;nCn; ð8Þ

where

w�;n ¼ e�
ðl��ln Þ

2

r2 ; and Wl� ¼
XN

n¼1

w�;n: ð9Þ

Here r is the standard deviation which reflects the expected vari-
ability in the ROIs due to age. For r� 1, only segmentations of sub-
jects of similar ages are considered in the atlas computation. When
r ?1, the segmentations are equally weighted as in the original
latent atlas framework (Riklin-Raviv et al., 2010). The kernel regres-
sion technique used to create a age specific prior is similar in spirit
to approaches such as Davis et al. (2007). While in Davis et al.
(2007) the observed images are paired with the subjects’ ages, here
the dependent variables are the unknown segmentations that are
estimated alternately with the construction of the latent spatio-
temporal atlas. The latent atlas should facilitate the segmentations
also for ages that are poorly represented by the training examples.

2.5. Linking age and atlas prior

The posterior probability p(Cn; g, ln) (the right hand side term
of the product in Eq. (3)) expresses the spatio-temporal depen-
dency of Cn. Similar to Riklin-Raviv et al. (2010) we use the log
of the Bernoulli distribution to construct the associated spatio-
temporal cost term that links age and atlas prior:

ESðCnjg;lnÞ ¼ �ðCn logðgðlnÞÞ þ ð1� CnÞ logð1� gðlnÞÞÞ; ð10Þ

where ESðCnjg;lnÞ is �log p(Cn; g, ln). It penalizes the difference
between each individual voxel and the corresponding age matched
atlas voxel. Voxels that are wrongly assigned to be part of the seg-
mentation v 2 C are restrained by the atlas g and therefore the
overall sum results in higher costs (and vice versa). Note that the
spatio-temporal atlas g can be used via this term to either facilitate
the evolution of the segmentation of the training examples or after
the completeness of the training phase to support the segmentation
of a new example as long as its associated GA is within the age-
range of the training examples.

2.6. Estimation of the morphological age

The proposed spatio-temporal atlas is based on the assumption
that brain development rate is similar across healthy fetuses and
that age differences induce a more significant change in brain
structures than the expected differences between subjects of the
same age. Once the normal subjects’ atlas is constructed, we can
use it to determine the developmental age of a given subject based
Fig. 5. Schematic overview of the morphological age estimation. The age l⁄ of a
segmentation C⁄ is estimated with help of the spatio-temporal atlas g.
on the similarity of its brain structures to training examples with
similar GAs. This process is illustrated in Fig. 5. The same mecha-
nism can also be used to refine the age estimation of the training
subjects concurrently with the segmentation and the atlas estima-
tion process. In this context, the estimation of the morphological
age of each subject can be integrated into the whole algorithm at
position ⁄ in Fig. 4. In other words, the developmental age (rather
than the true age) of a fetus with corresponding segmentation C⁄
can be obtained by optimizing the following expression with re-
spect to l⁄:

l̂� ¼ arg max
l�
ð� log pðC�jg;l�ÞÞ: ð11Þ

Note that the expression above, as a function of the segmentations
and the corresponding ages, is obtained by substituting Eq. (9) in Eq.
(8) and using the relation in Eq. (10) while assuming that the prior
probabilities p(l⁄) and p(C⁄) are independent and constant. In prac-
tice, this means we want to minimize the costs in Eq. (10) based on
the choice of the age l⁄. This optimization results in an age estimate
l⁄ for a segmentation C⁄ based on the atlas g. The age correction
can be seen as option to extract information about how the age
deviates from the nominal age, i.e. it is an indicator of the state of
morphological development.

2.7. Level-set framework

We take advantage of a probabilistic level-set formulation
(Osher and Sethian, 1988) that is well established in literature
for the segmentation of a single or set of aligned images. Simul-
taneously, we build a probabilistic spatio-temporal atlas (as illus-
trated in Fig. 4) from our segmentations. Let /n: X ? R denote a
level-set function relating to the region of interest (ROI) in image
In, and its zero-level Cn = {xj/(x) = 0} represents the ROI’s bound-
ary. We apply a smooth approximation of the Heaviside functioneHð/nÞ (Chan and Vese, 2001) to obtain a fuzzy division of the im-
age domain X into foreground and background regions. For eHð/Þ
and its derivative with respect to /, i.e. ~dð/Þ, we use the same for-
mulations as in Riklin-Raviv et al. (2010). We next construct a
unified cost functional of {/n}. An alternating minimization pro-
cess of the cost functional allows the joint estimation of the latent
spatio-temporal atlas g and the segmentations Cn (or /n), using
calculus of variations. The proposed cost functional
Eð/1; . . . ;/n;HÞ is the weighted sum of the following energy
terms:

Eð/1; . . . ;/n;HÞ ¼ cEL þ bEI þ aES þ jEA; ð12Þ

where EL is the classic smoothness term, EI is an image likelihood
term, ES is a spatio-temporal term, EA is an area term and a, b, c,
j are the corresponding weight parameters. The level-set functions
/n corresponding to the ensemble images are evolved iteratively
using a gradient descent paradigm. The unknown parameters H
are re-estimated alternately with the segmentations. In Riklin-Raviv
et al. (2010) a generative model for segmentation was suggested
and each of the functional terms has been evolved accordingly using
the level-set framework. These energy terms are revisited hereby
for self completeness. Our main contribution which is the spatio-
temporal term is discussed in details in the following section.

2.8. Cost functional terms

The spatio-temporal term. The spatio-temporal term extends the
spatial term suggested in Riklin-Raviv et al. (2010) to the temporal
domain. Let /n correspond to the segmentation of a brain scan of a
fetus at age ln, and let g(ln) define the latent spatial probabilistic
prior associated with ln. The spatio-temporal term in Eq. (10) can
be re-written using the continuous level-set framework as follows:
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ESð/n;gðlnÞÞ¼�
Z

X

eHð/nðxÞÞloggðlnÞðxÞþ eHð�/nðxÞÞlogð1�gðlnÞðxÞÞ
h i

dx;

ð13Þ

where eHð/nÞ is the fuzzy approximation of the binary segmentation
Cn. The latent spatial parameters, called the latent atlas, are re-esti-
mated at every iteration using the current segmentation estimates
of the entire ensemble as follows:

ĝðlnÞ �
1

Wln

XN

m¼1

wm;n
eHð/mðxÞÞ: ð14Þ

Image likelihood term. Let pin and pout define probability maps of the
foreground and the background regions, correspondingly. We ob-
tain these probability maps by training a random forest classifier
(Breiman, 2001; Geurts et al., 2006) on a set of training images
and labels during the initialization. The training set consists of the
same images that are used for the initialization of the atlas and seg-
mentations. The random forest classifier can then be applied to pre-
dict the trained labels on any test case. As visual features Fv

n at each
voxel v, we use the gray-level differences between v and its neigh-
boring voxels being sampled according to a Gaussian distribution
Nð0;dspatialÞ. The features are combined into Fn for each image In.
These spatial offsets dspatial are fixed for each decision tree.

Based on these probability maps, we compute an image likeli-
hood term as derived in Riklin-Raviv et al. (2010):

EIð/n;HÞ ¼ �
Z

X
½eHð/nðxÞÞ logðpinðFn; hÞÞ þ eHð�/nðxÞÞ

� logðpoutðFn; hÞÞ�dx; ð15Þ

with pin representing the result of the classifier as probability map
in [0; 1], and pout = 1 � pin.

Length term. EL denotes the contour length regularizer that is
commonly used in the level-set literature, like Chan and Vese
(2001). It controls the length of the segmentation, and restrains
boundary smoothness:

ELð/nÞ ¼
Z

X
jreHð/nðxÞÞjdx: ð16Þ

Area term. The area term is denoted by EA and has similar behavior
as a balloon force (Cohen and Cohen, 1993). It describes the area of
the shape or structure of interest:

EAð/nÞ ¼
Z

X

eHð/nðxÞÞdx: ð17Þ
2.9. Optimization of the cost functional

The cost function (Eq. (12)) is optimized by applying two steps
in an alternating manner: for fixed model parameters H, we evolve
the level set function /n using a gradient descent process:

/nðx; t þ DtÞ ¼ /nðx; tÞ þ Dt
@/n

@t
; ð18Þ

where t denotes the iteration number, and Dt is the size of the up-
date step in every iteration. The term /n = �d/n/dt is obtained from
the first variation of the unified cost functional, i.e. Eqs. (14)–(17)
substituted in Eq. (12):

/n ¼ dð/nÞðfxÞ cdiv
r/n

jr/nj

� �
þ b½log pinðFnðxÞ; hÞ�

�
ð19Þ

� log poutðFnðxÞ; hÞ� þ a½log gðlnÞ
� logð1� gðlnÞÞ� þ jg: ð20Þ

Then, we fix the segmentations /n and update the model parame-
ters, i.e. image information hn and spatio-temporal atlas g(ln).
When there is no age correction the initial set of weights, w remains
and the spatio-temporal atlas is re-estimated based on the updated
segmentations as in Eq. (8). Otherwise, the weights can be easily
recomputed based on the new age estimates.

3. Experiments

3.1. Setup

We evaluated the segmentation accuracy of the method on two
cerebral structures: the ventricles, and the cortex. In overall N = 32
cases the ventricles were manually segmented, and in 7 cases the
cortex was segmented. Segmentation and atlas building was per-
formed with 40 iterations, and the same parameters were used
for both structures: a = 0.3, b = 0.5, c = 0.1, j = 0.1 for the weights
of the cost terms, and r = 2 for standard deviation in the age
weighting term (Eq. (9)). A stop criterion was used that compared
the costs ci in iteration i to the previous iterations and fixed the
segmentation of a case if (ci � ci�1) � (ci�1 � ci�2) < 100. To mea-
sure segmentation accuracy, we computed the Dice coefficient
(DC) (Dice, 1945) between each segmentation and the correspond-
ing ground-truth (i.e. annotation). In addition, we measured the
mean and median distance from each point on the segmentation
surface to the closest point on the annotation surface as error Esurf

(similar to Hausdorff (1914)).
Comparison with other segmentation approaches. In the first

experiment we compare the semi-supervised spatio-temporal at-
las (SSV-ST) learning with 3 alternative approaches. Table 1 sum-
marizes the methods. We evaluate the effect of two aspects
specific to the proposed method: (1) the use of only a small frac-
tion of annotated examples for segmentation and atlas learning, in-
stead of all but one annotated examples as for example in (Habas
et al., 2010) (semi-supervised SSV-� vs. fully-supervised FSV-�).
(2) The use of a spatio-temporal latent atlas (�-ST), instead of a sin-
gle latent atlas (�-SNG) as for example in (Riklin-Raviv et al., 2009).
In all experiments, the training set consists of cases for which anno-
tations are known and used to build (FSV-ST, FSV-SNG) or to ini-
tialize (SSV-ST, SSV-SNG) the atlas, and the test set represents the
images for which no annotation is known, and for which the seg-
mentations have to be learned by the algorithm. For the fully
supervised methods (FSV-ST and FSV-SNG), we used M = N � 1
annotated cases for training, and one case for testing. For the
semi-supervised methods (SSV-SNG and our proposed method
SSV-ST) M� N annotated cases were used (with M = 3). We per-
formed either spatio-temporal atlas building (FSV-ST and SSV-
ST), or single atlas building (FSV-SNG and SSV-SNG). For FSV-ST
and FSV-SNG, we re-registered all training cases based on their
annotation onto each other.

To evaluate the effect of registration we performed the atlas
building on rigidly registered data DR, and on non-rigidly regis-
tered data DNR (for details on the data see Section 2.1).

	 SSV-ST: This is the proposed algorithm. In this setting, the num-
ber of known annotations used for segmenting the dataset is
significantly smaller than the size of the entire dataset. We ran-
domly choose M = 3 cases with GA < 23, 23 < GA < 27, and
GA > 27 respectively, and run the segmentation process includ-
ing atlas update for all other cases. The experiment is repeated
20 times, with different training triplets each.
	 SSV-SNG: This approach corresponds to the latent atlas pro-

posed in Riklin-Raviv et al. (2010). The atlas is learned together
with the segmentations, and is constructed by averaging the
evolving segmentations regardless of GA. We chose the same
experimental setup as in SSV-ST, resulting in the same training
case triplets and 20 runs.



Table 1
We compare the proposed method (SSV-ST) with 3 alternative approaches, that differ from SSV-ST in two aspects: approaches FSV-* learn the segmentation from a data set using
all but one annotated case (instead of only a small fraction of annotated cases) comparable with (Habas et al., 2010), and approaches *-SNG use a single latent atlas instead of a
spatio-temporal latent atlas comparable to (Riklin-Raviv et al., 2009).

Description Abbrev. No. of train data Re-estimate atlas No. of test data

Semi-supervised spatio-temporal SSV-ST M yes (N–M)
Semi-supervised single SSV-SNG M yes (N–M)
Fully supervised spatio-temporal FSV-ST (N � 1) no 1
Fully supervised single FSV-SNG (N � 1) no 1
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	 FSV-ST: We evaluate full annotation in a leave one out cross-
validation experiment. N � 1 out of N segmentations are known
and used to build the spatio-temporal atlas that remains fixed
throughout the segmentation process of the remaining volume.
The result demonstrates to which extent the spatio-temporal
atlas generalizes to examples not included in the atlas training,
and how it improves segmentation. This is similar to the algo-
rithm used in Habas et al. (2010).
	 FSV-SNG: Similar to the experiment above, we take advantage

of N � 1 known segmentations and perform LOOCV. However,
the atlas is constructed by averaging the known segmentations
regardless of the GA.

To evaluate if the algorithm generalizes well to other structures,
we again applied our algorithm to the non-rigidly registered data
DNR, this time in order to segment the cortex. For this dataset, only
7 manual annotations of the cortex were available. As in the ven-
tricle experiments,the atlas was initialized with 3 randomly se-
lected training cases with cortex annotation. The experiment was
performed as LOOCV, each time segmenting the cortex in one of
the cases where manual annotations of the cortex are available.

Evaluating the influence of parameters. The parameters a, b, c, j
were determined during initial cross-validation. For this purpose,
FSV-ST was performed for 30 iterations on five different test
images with GAs equally distributed from 20 to 30 GWs. Table 2
(column A) illustrates the parameter combinations that were eval-
uated (144 combinations in total). The final constellation with the
highest DC on average over all test images was a = 0.3, b = 0.5,
c = 0.1, j = 0.1. This parameter setup was used in all experiments.

To illustrate the mutual dependencies of the parameters, we
evaluated the influence of the parameters on the segmentation re-
sult in a pair-wise manner. For this, we varied two out of four
parameters at a time, and subsequently fixed the others according
to the previous test run. For this we performed experiment FSV-ST
on a test case at GW 25 for 30 iterations. The parameters a, b, c, j
were chosen to vary between the values given in Table 2 (column
B). The resulting DC for each parameter pair is plotted as matrices
in Fig. 6, showing the strong correlation between the parameters.
Table 2
Overview of the value range that was tested for each parameter. In an initial trial,
experiment FSV-ST was running for 30 iterations on five different test images, and the
overall mean DC was afterwards used to select the optimum parameter constellation.
Between 3 and 4 values were tested for each parameter (see column A) in this
experiment. Additionally, we evaluated the dependence of the parameters in a pair-
wise manner by varying two parameters at a time, while the others were fixed to the
previously computed optimum parameter setting. This was computed for a single test
case at GW 25. Column B shows the values that were experimented with in this trial.

Parameter (A) Initial value
range

(B) Pair-wise parameter evaluation

a {0, 0.1, 0.3} {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0.55}

b {0.1, 0.3, 0.5} {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75}

c {�0.3, �0.1, 0, 0.1} {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45}

j {�0.3, �0.1, 0, 0.1} {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45}
For the width of the introduced Gaussian age weight, we chose
r = 2 GW. For the random forest appearance model 32 trees proved
sufficient. The random forest classifier was only trained once on
the training data during the initialization, and afterwards used to
predict the learned labels onto every test case.

Evaluating the estimation of morphological age estimation. To
investigate the relationship between nominal age, and the mor-
phological age predicted by the atlas, we performed an experiment
using N = 32 annotations. The atlas was built on all cases except the
test case, and its morphological age was estimated by optimizing
Eq. (11) based on this atlas without knowledge of the nominal
age of the test case. Optimization was performed in a multi-scale
fashion, and we first computed the costs at a two-week time step
between the ages 20 and 30. Afterwards, we consider the area
around the local optimum for further computation, where we
again compute the costs at a smaller age span, etc.

We assessed if the morphological age estimate is stable, even if
the atlas training set changes. For this purpose, we selected one
test case (in a leave-one-out manner) and divided the remaining
cases into two distinct subsets with similar age distribution. Then,
we composed 2 independent atlases, one from each subset, and
estimated the morphological age of the test case with help of each
atlas, again without knowledge of the nominal age of the test case.
This results in two independent estimates of the test case’s age.

To investigate the role of scale in the age estimation algorithm,
we repeated this experiment for data after rigid registration, and
after rigid + scale registration. In the latter case, we simply per-
formed rigid registration with scale normalization in order to dem-
onstrate that even if cases are normalized in terms of their size, the
spatio-temporal atlas still encodes sufficient information to esti-
mate the gestational age.

Evaluating morphological age characteristics lissencephaly cases.
We evaluated if the relationship between morphological age and
nominal age exhibits characteristic differences when comparing
healthy control subjects and subjects suffering from pathology.
We compared the offset of the nominal- and the morphological
age in a set of 12 cases suffering from lissencephaly with the offset
in a control population.

3.2. Experimental results

Segmentation accuracy. Table 3 depicts average DC and surface
distances for all experiments on the rigid DR as well as non-rigid
DNR data set. Starting with the results on segmenting the ventricles
in DR, the spatio-temporal latent atlas (SSV-ST) resulted in a mean/
median DC of 0.56/0.58, and the mean Esurf of 1.58 mm. FSV-ST
achieved on average the highest DC of 0.70 (median 0.73), and
the smallest Esurf of 0.98 mm. FSV-SNG which is similar to FSV-ST
but with an average atlas that does not account for temporal devel-
opment reached a mean/median DC of 0.62/0.66, and a mean Esurf

of 1.02 mm. As for the latent atlases, the single (average) atlas of
SSV-SNG caused the lowest mean/median DC of 0.46/0.49, and
the largest deviation of the segmentation surface from the corre-
sponding ground truth (Esurf 2.76 mm on average).

As expected, non-rigid registration DNR improves the results,
while keeping the same relative trend among SSV-ST and the



Fig. 6. This example shows the influence of the parameters a, b, c, j on the segmentation result of a testcase at GW 25. For each parameter pair, the other two parameters
were fixed, and experiment FSV-ST was run for 30 iterations. The resulting DC was stored in each of these matrices. The white dot marks the best overall parameter setting.

Table 3
Results on the accuracy of segmenting the ventricles in both the rigid data set DR (top), and the non-rigid set DNR (bottom). Leave one out cross-validation was performed for the
experimental scenarios fully supervised spatio-temporal and single, and different randomly chosen triplet combinations of annotated training data were used for our proposed
method (semi-supervised spatio-temporal) and the latent atlas method (semi-supervised single). For each experiment, the overall mean (median) Dice coefficient (DC), as well as
the mean (median) euclidean surface distance (Esurf in mm) was computed between the segmentation surface and the ground truth surface, both after initialization and after the
final iteration. The results of our proposed method are highlighted in bold font.

Single atlas Spatio-temporal atlas

DR

DC
Fully supervised init: 0.55 ± 0.10 (0.55) init: 0.58 ± 0.10 (0.57)

final: 0.62 ± 0.17 (0.66) final: 0.70 ± 0.08 (0.73)
Semi-supervised init: 0.38 ± 0.12 (0.40) init: 0.48 ± 0.13 (0.48)

final: 0.46 ± 0.15 (0.49) final: 0.56 ± 0.13 (0.58)

Esurf

Fully supervised init: 1.74 ± 0.50 (1.27) init: 1.61 ± 0.49 (1.27)
final: 1.02 ± 0.55 (0.90) final: 0.98 ± 0.46 (0.90)

Semi-supervised init: 3.77 ± 1.39 (2.45) init: 2.37 ± 1.19 (1.68)
final: 2.76 ± 1.47 (1.56) final: 1.58 ± 0.94 (0.90)

DNR

DC
Fully supervised init: 0.64 ± 0.10 (0.64) init: 0.66 ± 0.10 (0.68)

final: 0.56 ± 0.20 (0.61) final: 0.77 ± 0.05 (0.77)
Semi-supervised init: 0.61 ± 0.10 (0.62) init: 0.61 ± 0.10 (0.64)

final: 0.69 ± 0.08 (0.71) final: 0.70 ± 0.07 (0.71)

Esurf

Fully supervised init: 1.40 ± 0.37 (1.27) init: 1.29 ± 0.34 (1.27)
final: 1.01 ± 0.47 (0.90) final: 0.69 ± 0.11 (0.90)

Semi-supervised init: 1.57 ± 0.37 (1.36) init: 1.60 ± 0.40 (1.26)
final: 1.02 ± 0.27 (0.90) final: 0.92 ± 0.25 (0.90)
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alternative approaches. SSV-ST yielded the second highest DC with
mean/median values of 0.70/0.71, and a mean Esurf of 0.92 mm.
Again, FSV-ST resulted in the highest average/median DC of 0.77/
0.77, and a mean Esurf of 0.69 mm. The other experiments with
the single atlases, FSV-SNG and SSV-SNG, achieved mean/median
DCs of 0.56/0.61, and 0.69/0.71, respectively. Their surface dis-
tances Esurf were 1.01 mm and 1.02 mm on average.

Fig. 7 shows the age-specific template drawn from the proposed
spatio-temporal atlas for the GWs 20, 22, 24, 26, 28, 30. The first
two rows represent the initialization (top row) and the resulting
atlas after 40 iterations (middle row) of the proposed spatio-
temporal latent atlas (SSV-ST). The color encodes the distance of
the surface to the template GW. This indicates how well the tem-
plate represents the variability in the learning population. In addi-
tion, the third row in Fig. 7 illustrates the spatio-temporal atlas
from FSV-ST for the same ages. The rapid development of the ven-
tricle over time is clearly visible.

For the segmentation of the cortex, we were able to achieve a
mean/median DC between the automatic segmentation and
ground-truth annotation of 0.81/0.89, as shown in Table 4.

Morphological age estimation. We evaluated the method to esti-
mate the morphological age on a healthy dataset with annotations



Fig. 7. 3D view of the lateral ventricles from top and right of the spatio-temporal latent atlas for the GWs 20, 22, 24, 26, 28, 30 (per column). The first row depicts the
initialization, and the second row the resulting atlas after 40 iterations for our proposed method (SSV-ST). Bottom row: corresponding spatio-temporal atlas being achieved in
experiment FSV-ST.
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of the ventricles, and additionally, we compared the age estimation
of a pathological dataset with annotations of the cortex to a
healthy dataset with the same annotated structure.

We report morphological age estimate stability after rigid regis-
tration in Fig. 8(a) and after rigid registration + scale normalization
in Fig. 8(b). For each case, two age estimates based on independent
atlases are plotted as green and blue symbols connected by a line
to illustrate the consistency of the morphological age estimate
for each case, even if the atlas is based on two independent cohorts.
The horizontal axis represents nominal age, the vertical axis indi-
cates estimated morphological age. The average age estimate devi-
ation is ±2.9 days after rigid registration, and ±6.2 days for
rigid + scale normalization. The latter means that scale is not en-
coded in the atlas, and thus does not influence the estimate. In
the majority of the cases the direction of the offset of the two mor-
phological age estimates and the nominal age is consistent. This
holds for both the atlas the encodes scale, and for the atlas that
does not. Additionally, we evaluated the absolute mean (median)
deviation from the nominal age of both age estimates. The results
of both the rigid and scaled dataset were rather similar: 4.0 (3.5)
days for the rigid dataset, and 3.9 (2.7) days for the scaled one.

In a second experiment, we estimated the morphological age of
cortex segmentations in a set of 12 pathological cases and
Table 4
Evaluation of the cortex segmentation in the non-rigid dataset DNR regarding the Dice
coefficient (DC) as well as the mean (median) euclidean surface distance (Esurf in mm).
We used the a random constellation of training case triplets to initialize the atlas. The
cortex was segmented in one out of seven cases where manual annotations were
available for evaluation, and the atlas remained untouched after the initialization.

Spatio-temporal atlas-based segmentation

DNR

DC
init: 0.81 ± 0.07 (0.84)
final: 0.89 ± 0.06 (0.89)

Esurf

init: 2.33 ± 1.03 (2.06)
final: 1.21 ± 0.84 (0.90)
compared the deviation from their nominal ages to those of a
healthy reference group with 32 cortex annotations. The annota-
tions from the healthy set consisted of 7 manual annotations, as
well as 25 segmentations that were retrieved from the proposed
latent atlas-based method. The results are visualized in Fig. 9,
where (a) shows the nominal age (x-axis) in contrast to the mor-
phological age estimate (y-axis) for both the pathological group
(red symbols) and the healthy control (blue symbols), and (b) illus-
trates the offset of the age estimate from the nominal age. The
mean (median) morphological age offset of the pathological group
was �3.0 ± 3.5(�1.9) days, and those of the healthy group
�0.1 ± 0.8(0.0) days. The offset between the morphological age
and the nominal age is significantly stronger for lissencephaly
cases compared to control cases (p = 0.014, student’s t-test, nor-
mality tested with a Lilliefors test).
4. Discussion

This paper describes a method to segment cerebral structures in
multiple subjects and to simultaneously learn a spatio-temporal
latent atlas of their age dependent development. The latent atlas
serves two purposes. Firstly, it is a prior that links segmentations
across subjects of different ages, secondly, it provides a means to
estimate the morphological age based on new observed imaging
data.

The atlas as a function of age is necessary to study the substantial,
systematic morphological changes of the brain during gestation. A
static atlas would not represent the variability in the population
with sufficient accuracy, and would neglect the age dependency of
shape and appearance. We evaluated four main aspects of the pro-
posed method: (1) Does the spatio-temporal atlas represent the var-
iability, and the temporal development in the study population
accurately. (2) Can we use the proposed method to achieve accurate
segmentations, even if expert annotations are available only for a
minimal number of cases. (3) Is the age-specificity of the atlas suffi-
cient to estimate the gestational age of cases based on their mapping
to the atlas. (4) What is the relative effect of the components of the
cost function that segments images, and at the same time links the
segmentation via the spatio-temporal latent atlas.
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Fig. 8. Consistency of atlas based age re-estimation on segmentations of the ventricles. The nominal age is plotted on the horizontal axis, the morphological age estimate is
represented on the vertical axis (both given in GWs). The gray line demonstrates the situation where the morphological age is the same as the nominal age. Green and blue
symbols depict the morphological age that is computed based on two atlases learned from disjoint example sets. The corresponding morphological age estimates for a single
subject retrieved from two individual atlases are connected by a line. In (a), the images were aligned via rigid registration, and in (b), we added scaling to the registration of (a)
in order to achieve the same dimension for each ventricle segmentation. This eliminates the sole dependency of shape size in our age estimation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Age estimation of the patient group diagnosed with lissencephaly (L) in comparison to a healthy control group (H). In (a), the nominal age is plotted on the horizontal
axis, the morphological age estimate is represented on the vertical axis (both given in GWs). Blue reflects the morphological age estimation of H, whereas the estimated age of
L is plotted in red. The gray line represents the situation where the morphological age is the same as the nominal age. (b) shows the deviation of both patient groups from the
gray line. Obviously, cases diagnosed with lissencephaly have a larger offset than healthy cases, and are thus estimated younger than their nominal age. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1. Modeling temporal development across individuals

The spatio-temporal latent atlas captures the development of a
structure during gestational aging across individuals. We evaluated
the atlas for both rigidly registered data DR, and non-rigidly regis-
tered data DNR. A comparison of the results on DR and DNR shows
that the approach on DNR achieves higher segmentation accuracy,
if the latent atlas is used for segmentation. However, then, part
of the variability is encoded in the deformation fields, and part in
the latent atlas. In the rigid case, DR, the entire variability of the co-
hort is encoded in the latent atlas. For the segmentation achieved
with the spatio-temporal atlas (FSV-ST), the mean surface error
Esurf is 1.58 mm in DR, and 0.92 mm in DNR. As expected, this is bet-
ter compared to the analogous value for a single age independent
average template representing all cases (FSV-SNG), bearing a mean
Esurf of 2.76 mm in DNR, and 1.02 mm in DNR. While a single latent
atlas as in Riklin-Raviv et al. (2010) is well suited to capture vari-
ability if no temporal component is present, it does not reflect
changes that correlate with specific parameters, such as age. As ex-
pected, the accuracy is higher for non-rigidly registered data sim-
ilar to Habas et al. (2010), compared to rigidly registered data.
Non-rigid registration is preferable for segmentation, while the at-
las in rigidly registered data encodes the entire developmental
information. This suggests that for morphological age estimation
or if the atlas serves as basis for statistical observations, it should
be either calculated on rigidly aligned data, or should be mapped
to this space, after segmentations have been learned in non-rigidly
registered imaging data. It is worth noticing that in DNR the dis-
tances Esurf of the segmentations achieved by the single atlas are
closer to the results with the spatio-temporal atlas than in DR,
since the non-rigid registration that leads to DNR partly accounts
for the variation among the subjects over time.

Segmentation accuracy depends on data and preprocessing,
and thus the comparison in this paper were performed on identi-
cally preprocessed data to evaluate the main claims regarding
semi-supervised learning. Numbers should be compared only
within cohorts and for identical preprocessing. Nevertheless re-
sults for the fully annotated case are comparable to published
work. In Kuklisova-Murgasova et al. (2011), segmentation accu-
racy of the cortex in fetal brain MRIs reached a Dice coefficient
(DC) of 0.85 ± 0.02. In comparison to this result, we were able to
reach a DC of 0.89 ± 0.06 for the leave-one-out experiment on cor-
tex segmentation. Habas et al. (2010) presented results for the
segmentation of the ventricles with an accuracy of 0.88 ± 0.05
(DC), which is higher than our result of 0.70 ± 0.08, or
0.77 ± 0.05 respectively.
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By evaluating the difference between each case used for atlas
building and the corresponding age dependent atlas template in
Fig. 7 we learn how well the atlas represents the variability among
cases of the same age. Fig. 7 illustrates how this deviation is dis-
tributed across the surface of the learned structure in DR. The
strong initial deviation of the template at GW 26 is due to a bad ini-
tialization, but is reduced substantially during optimization. In
general, there is a consistent location-specific distribution of the
deviation between population and template, mirroring the vari-
ability across the population for specific parts of the structure.

There are two reasons for this observation. First, it is possible
that during a specific gestational period variability across the pop-
ulation is particularly high in certain cerebral areas. Second,
changes in developmental velocity might vary across the popula-
tion, i.e., even when comparing individuals at the same nominal
age we might observe them at slightly different stages of their
development. This is particularly relevant when aiming to under-
stand disease cohorts, since some diseases correlate with malfor-
mations of cortical development (Barkovich et al., 2001a,b;
Raybaud and Widjaja, 2011) that might partly be explained as
developmental delay.

Fig. 2 sheds some light on these two aspects. The uncertainty of
the shape encoded in the spatio-temporal atlas, expressed as the
gradient of the function Eq. (8), has two components. The gradient
in the three spatial dimensions Fig. 2(a) represents variability in
shape independent from age, or the specificity of the atlas. Red
areas indicate high variability. The temporal gradient shown in
Fig. 2(b) captures the longitudinal component of the atlas. For each
point on the surface, red indicates strong growth, while blue indi-
cates shrinkage. We can see how the occipital horns (cornua occip-
italia) grow from an initially rounded shape to a sharp structure,
and move outwards, in correspondence with the overall growth.
The cavum septi pellucidi – the central part connecting the lateral
ventricles – exhibits occipital growth, even after GW 20, that might
be connected with a dorsal expansion of the corpus callosum. The
cavum septi pellucidi broadens, and becomes thinner at the same
time indicated by the red exterior parts of the lateral ventricles,
and the blue interior part, indicating thinning. The ventricle grows
from a length of 43 mm at GW 20 to 56 mm at GW 30, the width
increases from 32 mm to 40 mm during the same period. While
we cannot infer decoupled processes from the atlas, we can make
two interesting observations. In some regions such as the central
posterior part in GW 26–28, there is a correlation between rapid
development and high spatial uncertainty. Rapid development
might increase variability introduced by small speed differences
across subjects. However, at other locations, e.g., the central ante-
rior surface in GW 20–22, there is a rapid development, while at
the same time the spatial variability is relatively low indicating a
high degree of synchronization across the subjects. To summarize,
spatial, and temporal variability are at least partially independent,
and the amount of synchronization of growth among subjects var-
ies across the ventricle surface. Related work regarding develop-
mental delay detection was described in the context of
archeological findings in Durrleman et al. (2009).

4.2. Semi-supervised spatio-temporal atlas learning and segmentation

If only part of the image data is annotated we have to perform
semi-supervised learning of the atlas and segmentations. The re-
sult of SSV-ST is the corresponding central result of the proposed
method, with about 10% of the data were annotated. During the
optimization process, both atlas, and segmentations of all cases
are learned. Table 3 shows the resulting segmentation error. In
comparison to FSV-ST, accuracy decreases in SSV-ST, but overall er-
ror is still acceptable (DC 0.70 in DNR, and a mean deviation of seg-
mentation from ground truth surface of 0.92 mm). Again, the
spatio-temporal latent atlas achieves higher accuracy compared
with a single latent atlas (SSV-SNG). The result indicates that even
if annotation is available only for an extremely small fraction of the
data, spatio-temporal atlases can be learned, and outperform static
atlases. This is relevant if including large amounts of data is neces-
sary to accurately capture the variability in a population. Results of
FSV-ST are comparable to work in Habas et al. (2010), that de-
scribes the development from GW 20 to GW 24.

4.3. Age specificity of the atlas, and its implications

The atlas can be used to estimate the gestational age based on
morphology. Morphological age estimate and the nominal age typ-
ically agree, with a mean deviation of 4 days. While scale contrib-
utes substantially to the estimate, even atlases representing only
non-rigid components of the development can predict the gesta-
tional age with comparable deviation from the nominal age. Are
these deviation due to algorithmic limitations, or to actual devel-
opmental delay or advance? The relatively high repeatability when
estimating the morphological age with two independent atlases
(mean difference ±2.9 days for rigidly registered data) suggests
that the this deviation is an valid observation.

4.4. The morphological age and disease

Measuring this offset between morphological age and nominal
age is particularly relevant when studying disease since diseases
can cause characteristic developmental delay (Ghai et al., 2006;
von Rhein et al., 2011). This makes it clinically relevant to under-
stand the developmental relationship of individual cases compared
to the overall population, and indicates that age estimation based
on morphology might be a reliable marker, when studying effects
of disease. The offset between morphological age and nominal
age was significantly stronger (significant developmental delay)
for a pilot disease cohort, when compared to control subjects. This
indicates its potential as a disease marker.

4.5. Contribution of the cost function components

In order to evaluate the influence of each parameter a (spatial
weight), b (image weight), c (length term weight), j (balloon force
weight) on the segmentation result, we performed pair-wise
parameter variation, i.e. for each experiment, we fixed two param-
eters while the remaining parameter pair was varied within a cer-
tain interval (Table 2 (column B)). The resulting segmentation
accuracy shown in Fig. 6 indicates that for all parameters, there
is typically a relatively well behaved decrease of accuracy from
the maximum. Furthermore they show certain relationships
among the parameters. For example, it is clearly visible that the
proposed method works best if a and b are assigned a relatively
high value as compared to c and d. This means that during optimi-
zation, most information emerges from the image term, followed
by the spatio-temporal atlas. Additionally, a linear correlation be-
tween parameter pairs is visible corresponding to the strong ridges
of values that describes the best combination along which the
parameters should be chosen. In the final experiments, the weight-
ing of the image term, b, is assigned the highest value of 0.5, and
the spatio-temporal atlas weight, a, the second highest of 0.3. c
and j are equally set to 0.1.

4.6. Limitations

This study has limitations. The atlas building was performed on
volume data reconstructed from three stacks of orthogonal slices
(coronal, sagittal, axial). Therefore, artifacts introduced by the
reconstruction algorithm are included in the results. It is worth
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mentioning that there are alternative reconstruction, and super-
resolution algorithms such as Gholipour et al. (2010); Kim et al.
(2010); Kuklisova-Murgasova et al. (2011). The current formula-
tion does not decouple the variability in the data due to develop-
mental shifts, and actual variability. Instead it represents
variability across the population and the estimated local develop-
mental velocity in the cohort.

5. Conclusion

We propose a spatio-temporal latent atlas for the semi-super-
vised segmentation of cerebral structures during early brain devel-
opment. Our dataset consists of MRIs from different subjects at
different time points, from which we select a small subset of anno-
tated examples for initialization. During optimization, we learn
segmentations for the ventricles and cortex from a large number
of non-annotated images, as well as an atlas that captures the var-
iation among subjects and their joint development over time. We
use kernel regression to build the spatio-temporal latent atlas con-
tinuously over the gestational period of 20–30 weeks. Thus, we are
able to interpolate the atlas for any age within the captured time
period. The spatio-temporal latent atlas requires only minimal user
input, and is aimed at learning models from large numbers of
examples. In addition, the atlas allows for the estimation of a sub-
ject’s age based on morphology, suggesting its use when quantify-
ing disease effects. Initial results demonstrate that the offset
between morphological age and nominal age, can be a disease
characteristic. Future work will focus on exploiting the learned
neuro-developmental atlases for growth modeling and the assess-
ment of pathologies.
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