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Abstract

The paper addresses the problem of “class-based” image-
based recognition and rendering with varying illumination.
The rendering problem is defined as follows: given a single
input image of an object, and a sample of images with varying
illumination conditions of other objects of the same general
class, re-render the input image to simulate new illumination
conditions. The class-based recognition problem is similarly
defined: given a single image of an object in a database of im-
ages of other objects, some of them are multiply sampled under
varying illumination, identify (match) any novel image of that
object under varying illumination with the single image of that
object in the database.

We focus on Lambertian surface classes, and in particu-
lar the class of human faces. The key result in our approach is
based on a definition of an illumination invariant signature im-
age which enables an analytic generation of the image space
with varying illumination. We show that a small database of
objects — in our experiments as few as two objects — is suffi-
cient for generating the image space with varying illumination
of any new object of the class from a single input image of that
object. In many cases the recognition results outperform by
far conventional methods and the re-rendering is of remark-
able quality considering the size of the database of example
images and the mild pre-process required for making the algo-
rithm work.

1 Introduction
Consider the image space generated by applying a source of

variability, say changing illumination or changing viewing po-
sitions, on a 3D object or scene. Under certain circumstances
the images generated by varying the parameters of the source
can be represented as a function of a small number of sample
images from the image space. For example, the image space
of a 3D Lambertian surface is determined by a basis of three
images, ignoring cast-shadows [18, 19, 9, 4, 12, 17]. In this
case, the low dimensionality of the image space under light-
ing variations is useful for synthesizing novel images given a
small number of model images, or in other words, provides
the means for an “image-based rendering” process in which
sampled images replace geometric entities formed by textured
micro-polygons for rendering new images.

Visual recognition and image re-rendering (synthesis) are
intimately related. Recognizing a familiar object from a sin-
gle picture under some source of variation requires a handle on
how to capture the image space created by that source of vari-
ation. In other words, the process of visual recognition entails
an ability to capture an equivalence class relationship that is
either “generative”, i.e., create a new image from a number of
example images of an object, or “invariant”, i.e., create a “sig-
nature” of the object that remains invariant under the source
of variation under consideration. For example, in a generative
process a set of basis images may form a compact represen-
tation of the image space. A novel input image is then con-
sidered part of the image space if it can be synthesized from
the set of basis images. In a process based on invariance, on
the other hand, the signature may be a “neutral” image, say
the object under a canonical lighting condition or viewing po-
sition. A novel image is first transformed into its neutral form
and then matched against the data base of (neutral) images.

In this paper we focus on recognition and image re-
rendering under lighting condition variability of aclassof ob-
jects, i.e., objects that belong to a general class, such as the
class of faces. In other words, for the re-rendering task, given
sample images of members of a class of objects, and asin-
gle image of a new object of the class, we wish to render new
images of the new object that simulate changing lighting con-
ditions.

Our approach is based on a new result showing that the set
of all images generated by varying lighting conditions on a
collection of Lambertian objects all having the same shape but
differing in their surface texture (albedo) can be characterized
analytically using images of a prototype object and a (illumi-
nation invariant) “signature” image per object of the class. The
Cartesian product between the signature image of an objecty

and the linear subspace determined by the images of the pro-
totype object generates the image space ofy (Proposition 1).
The second result is on how to obtain the signature image from
a data base of example images of several objects while proving
that the signature image obtained is invariant to illumination
conditions (Theorems 1,2).

Our method has two advantages. First and foremost, the
method works remarkably well on real images (of faces) using
a very small set of example objects — as few as two exam-
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ple objects (see Fig. 7). The re-rendering results are in many
cases indistinguishable from the “real” thing and the recogni-
tion results outperform by far conventional methods. Second,
since our approach is based on a simple and clean theoretical
foundation, the limitations and breaking points can be clearly
distinguished thus further increasing this algorithm’s practical
use.

1.1 Related work

The basic result about the low dimensionality of the im-
age space under varying lighting conditions was originally re-
ported in [18, 19] in the case of Lambertian objects. Appli-
cations and related systems were reported in [9, 4, 8]. Re-
rendering under more general assumptions, yet exploiting lin-
earity of light transport was reported in [12, 17].

Work on “class-based” synthesis and recognition of im-
ages (mostly with varying viewing positions) was reported in
[5, 3, 7, 27, 26, 24, 25, 6, 2, 15]. These methods adopt a “re-
constructionist” approach (see also Section 3) in which a nec-
essary condition for the process of synthesis is that the original
novel image be generated, reconstructed, from the database of
examples. For example, the “linear class” of [27, 13] works
under the assumption that 3D shapes of objects in a class are
closed under linear combinations (in 3D). Recently, [16] have
proposed to carry an additive error term, the difference be-
tween the novel image and the reconstructed image from the
example database. During the synthesis process, the error term
is modified as well, thus compensating for the difference be-
tween the image space that can be generated from the database
of examples and the desired images. Their error term is some-
what analogous to our signature image. However, instead of
an error term, we look for an illumination invariant term (sig-
nature image) that makes for the difference (in a multiplicative
sense) between the image space spanned by a single prototype
(or reference) object and the novel image. The database of ex-
amples is used for recovering a number of parameters required
for generating the signature image.

2 Background and Definitions
We will restrict our consideration to objects with a Lam-

bertian reflectance function, i.e., the image can be described
by the product of the albedo (texture) and the cosine an-
gle between a point light source and the surface normal:
�(x; y)n(x; y)>s where0 � �(x; y) � 1 is the surface re-
flectance (grey-level) associated with pointx; y in the image,
n(x; y) is the surface normal direction associated with point
x; y in the image, ands is the (white) light source direction
(point light source) and whose magnitude is the light source
intensity.

The basic result we will use in this paper is that the image
space generated by varying the light source vectors lives in
a three-dimensional linear subspace [18, 19]. To see why this
is so consider three imagesI1; I2; I3 of the same object (�; n
are fixed) taken under linearly independent light source vec-
torss1; s2; s3, respectively. The linear combination

P
j �jIj

is an imageI = �n>s wheres =
P

j �jsj . Thus, ignoring
shadows, three images are sufficient for generating the image

space of the object. The basic principle can be extended to
deal with shadows, color images, non-white light sources, and
non-Lambertian surfaces [19, 12, 8], but will not be considered
here as our approach can be likewise extended. This principle
has been proven robust and successfully integrated in recogni-
tion schemes [19, 8, 4]. See Fig. 7 for an example of using this
principle for image synthesis.

We define next what is meant by a “class” of objects. In or-
der to get a precise definition with which we can base analytic
methods on we define what we call an “ideal” class as follows:

Definition 1 (Ideal Class of Objects) An ideal class is a col-
lection of 3D objects that have the same shape but differ in the
surface albedo function. The image space of such a class is
represented by:

�i(x; y)n(x; y)
T sj

where�i(x; y) is the albedo (surface texture) of objecti of
the class,n(x; y) is the surface normal (shape) of the object
(the same for all objects of the class), andsj is the point light
source direction, which can vary arbitrarily.

In practice, objects of a class do have shape variations, al-
though to some coarse level the shape is similar, otherwise we
would not refer to them as a “class”. The ideal class could be
satisfied if we perform pixel-wise dense correspondence be-
tween images (say frontal images) of the class. The dense cor-
respondence compensates for the shape variation and leaves
only the texture variation. For example, Poggio and colleagues
[25] have adopted such an approach in which the flow field and
the texture variation were estimated simultaneously during the
process of synthesizing novel views from a single image and
a (pixel-wise pre-aligned) data base. The question we will ad-
dress during the experimental section is what is the degree of
sensitivity of our approach to deviations from the ideal class
assumption. Results demonstrate that one can tolerate signif-
icant shape changes without noticeable degradation in perfor-
mance, or in other words, there is no need to establish any
dense alignment among the images beyond alignment of cen-
ter of mass and scale.

From now on when we refer to a class of objects we mean
an “ideal” class of objects as defined above. We will develop
our algorithms and correctness proofs under the ideal class as-
sumption. We define next the “recognition” and “synthesis”
(re-rendering) problems.

Definition 2 (Recognition Problem) GivenN � 3 images of
N objects under3 lighting conditions andM � N other ob-
jects of the same class illuminated under some arbitrary light
conditions (each), identify theM + N objects from a single
image illuminated by some novel lighting conditions.

Note that we require a small numberN of objects, 3 images
per object, in order to “bootstrap” the process. We will refer to
the3N images as the “bootstrap set”. The synthesis problem
is defined similarly,

Definition 3 (Synthesis (Re-rendering) Problem)Given
N � 3 images ofN objects of the same class, illuminated
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under 3 distinct lighting conditions and a single image of
a novel object of the class illuminated by some arbitrary
lighting condition, synthesize new images of the object under
new lighting conditions.

To summarize up to this point, given the ideal class and the
synthesis/recognition problem definitions above, our goal is:
we wish to extend the linear subspace result of [19] that deals
with spanning the image space�n>s where onlys varies, to
the case where both� ands vary. We will do so by showing
that it is possible to map the image space of one object of the
class onto any other object, via the use of an illumination in-
variant signature image. The recovery of the signature image
requires a bootstrap set of example images, albeit a relatively
small one (as small as images generated from two objects in
our experiments). The remainder of the paper deals with ex-
actly this problem. We first describe a “brute-force” approach
for addressing the inherent bilinearity of the problem, detailed
next, and then proceed to the main body of this paper.

3 A Reconstructionist Approach and its Short-
comings

We wish to span the image space�n>s where both� ands
vary. Lets1; s2; s3 be a basis of three linearly independent vec-
tors, thuss =

P
j xjsj for some coefficientsx = (x1; x2; x3).

Let �1; :::; �N be a basis for spanning all possible albedo func-
tions of the class of objects, thus� =

P
i �i�i for some coef-

ficients�1; :::; �N . Let ys be the image of some new objecty

of the class with albedo�y and illuminated by illuminations,
i.e.,

ys = �yn
>s = (

NX
i=1

�i�i)n
>(

3X
j=1

xjsj):

Let A1; :::; AN be m � 3 matrices whose columns are the
images of objecti, i.e., the columns ofAi are the images
�in

>s1; �in
>s2; �in

>s3. We assume that all images are of
the same size and containm pixels. We have therefore,

min
x;�i

j ys �
NX
i=1

�iAix j
2; (1)

which is a bilinear problem in theN + 3 unknownsx; �i
(which can be determined up to a uniform scale). Clearly, if
we solve for these unknowns, we can then generate the im-
age space of objecty from any desired illumination condition
simply by keeping�i fixed and varyingx.

One way to solve for the unknowns is first to solve for
the pairwise product ofx and�i, i.e., a set of3N variables
z = (�1x; :::; �Nx). LetA = [A1; :::; AN ] be them�3N ma-
trix (we assumem >> 3N ) obtained by stacking the matrices
Ai column-wise. Thus, the vectorz can be obtained by the
pseudo-inverseA# = (A>A)�1A> as the least-squares solu-
tion z = A#ys. Fromz we can decouplex and�i as follows.
Since the system is determined up to scale, let

P
i �i = 1.

Then, group the entries ofz into z = (z1; :::; zN) wherezi is

a vector of size three. We have,

x =

NX
i=1

zi

and,

�i =
1

3

3X
j=1

zij
xj
:

There are a number of observations that are worth making.
First, this approach is a “reconstructionist” one in the sense
that one is attempting to reconstruct the imageys from the
data set of example images, the bootstrap set (for example,
[25, 24, 7]). In practice, especially when the size of the boot-
strap set is relatively small,Az 6= ys. Moreover, for the same
reasons, the decoupling of the variablesxj and�i from the
vectorz adds another source of error. Therefore, before we
begin creating synthetic images (by varyingxj) we are faced
with the problem of having only some approximate rendering
of the original imageys. This problem is acute for small boot-
strap sets, and therefore this approach makes practical sense
only for large example sets. The second point to note is that
there is some lack of ”elegance” (which inevitably contributes
to lack of numerical stability and statistical bias due to over-
fitting1) in blowing up the parameter space fromN + 3 to 3N
in order to obtain a linear least-squares solution.

We illustrate the reconstructionist approach in practice in
Fig. 1. We use a bootstrap set of 10 objects (30 images) dis-
played in Fig. 2, and a bootstrap set of 20 objects (not dis-
played here). The results of reconstruction are poor for both
sets, although one notices some improvement with the larger
set of 20 objects. The poor reconstruction is attributed to two
main sources. First, is the size of the data base. A data base
of 10 (or 20) objects is apparently not sufficient for capturing
the variation among objects in the class. Second, and proba-
bly a more dominant source, is the lack of dense pixel-wise
alignment among the database and the novel image. Previ-
ous work by [26, 24, 25] demonstrate very good results with
large databases (around 100 objects) under pixel-wise align-
ment. The bilinear model proposed by [7] does have implicitly
N+3 parameters for representing the novel image but requires
more parameters for fitting the database images to the model.
Hence, the performance of the Freeman and Tenenbaum’s bi-
linear model should be stronger than the simplistic reconstruc-
tionist approach demonstrated above but weaker than the per-
formance of the Qimage approach described in the sequel.

In our approach, detailed below, we achieve two major
goals: first, we do not make a reconstructionist assumption
and thereby tolerate small databases without pixel-wise align-
ment, second we solve (linearly) for a system ofN + 3 pa-
rameters (instead of3N ). As a byproduct of the method of
optimization we obtain an intermediate image, an illumination
invariant signature image, which can also be used for purposes
of visual recognition.

1Numerical problems due to “blowing” up parameter space for purpose of
linearization can be reduced by solving aheteroscedasticoptimization prob-
lem [10], which could be quite unwieldy for large systems.
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Figure 1. Illustration of the “reconstructionist” approach. (a) original image, (b) image reconstructed from the the bootstrap set of Fig. 2,
and (c) image reconstructed from a larger bootstrap set of 20 objects (60 images). The reconstruction is poor in both cases. See text for
further details.

4 The Quotient Image Method
Given two objectsa;b, we define the quotient imageQ by

the ratio of their albedo functions�a=�b. Clearly,Q is illu-
mination invariant. In the absence of any direct access to the
albedo functions, we show thatQ can nevertheless be recov-
ered, analytically, given a bootstrap set of images. OnceQ is
recovered, the entire image space (under varying lighting con-
ditions) of objecta can be generated byQ and three images of
objectb. The details are below.

We will start with the caseN = 1, i.e., there is a single
object (3 images) in the bootstrap set. Let the albedo function
of that objecta be denoted by�a, and let the three images be
denoted bya1; a2; a3, therefore,aj = �an

>sj , j = 1; 2; 3.
Let y be another object of the class with albedo�y and letys
be an image ofy illuminated by some lighting conditions,
i.e., ys = �yn

>s. We define below an illumination invariant
signature imageQy of y against the bootstrap set (in this case
againsta):

Definition 4 (Quotient Image) The quotient imageQy of ob-
jecty against objecta is defined by

Qy(u; v) =
�y(u; v)

�a(u; v)
;

whereu; v range over the image.

Thus, the imageQy depends only on the relative surface
texture information, and thus is independent of illumination.
The reason we represent the relative change between objects
by the ratio of surface albedos becomes clear from the propo-
sition below:

Proposition 1 Given three imagesa1; a2; a3 of objecta illu-
minated by any three linearly independent lighting conditions,
and an imageys of objecty illuminated by some light source
s, then there exists coefficientsx1; x2; x3 that satisfy,

ys = (
X
j

xjaj)
Qy;

where
 denotes the Cartesian product (pixel by pixel multi-
plication). Moreover, the image space of objecty is spanned
by varying the coefficients.

Proof: Let xj be the coefficients that satisfys =
P

j xjsj .
The claimys = (

P
j xjaj)
Qy follows by substitution. Since

s is arbitrary, the image space of objecty under changing il-
lumination conditions is generated by varying the coefficients
xj .

We see that onceQy is given, we can generateys (the novel
image) and all other images of the image space ofy. The key
is obtaining the quotient imageQy. Givenys, if somehow we
were also given the coefficientsxj that satisfys =

P
j xjsj ,

thenQy readily follows:Qy = ys=(
P

j xjaj), thus the key is
to obtain the correct coefficientsxj . For that reason, and that
reason only, we need the bootstrap set— otherwise, a single
objecta would suffice (as we see above).

Let the bootstrap set of3N pictures be taken from three
fixed (linearly independent) light sourcess1; s2; s3 (the light
sources are not known). LetAi, i = 1; :::; N , be a matrix
whose columns are the three pictures of objectai with albedo
function �i. Thus,A1; :::; AN represent the bootstrap set of
N matrices, each is am � 3 matrix, wherem is the number
of pixels of the image (assuming that all images are of the
same size). Letys be an image of some novel objecty (not
part of the bootstrap set) illuminated by some light sources =P

j xjsj . We wish to recoverx = (x1; x2; x3) given theN
matricesA1; :::; AN and the vectorys.

We define thenormalized albedofunction� of the bootstrap
set as:

�(u; v) =

NX
i=1

�2i (u; v)

which is the sum of squares of the albedos of the bootstrap set.
In case where there exist coefficients�1; :::; �N such that

�(u; v)

�y(u; v)
= �1�1(u; v) + :::+ �N�N (u; v)

where�y is the albedo of the novel objecty, we say that�y is
in therational spanof the bootstrap set of albedos. With these
definitions we show the major result of this paper: if the albedo
of the novel object is in the rational span of the bootstrap set,
we describe an energy functionf(x̂) whose global minimum
is atx, i.e.,x = argmin f(x̂).
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Theorem 1 The energy function

f(x̂) =
1

2

NX
i=1

j Aix̂� �iys j
2 (2)

has a (global) minimum̂x = x, if the albedo�y of objecty
is rationally spanned by the bootstrap set, i.e., if there exist
�1; :::; �N such that

�

�y
= �1�1 + :::+ �N�N

Proof: Let ŝ =
P

j x̂jsj , thus,Aix̂ = �in
>ŝ. In vectorized

form:

Aix̂ =

2
6666664

�i1n
>
1

�i2n
>

2

:
:
:

�imn
>

m

3
7777775
ŝ =Wi ŝ

where�i1; :::; �im are the entries of�i in vector format. The
optimization functionf(x̂) can be rewritten as a functiong(ŝ)
of ŝ:

g(ŝ) =
1

2

NX
i=1

jWiŝ� �iWysj
2

=
X
i

1

2
ŝ>W>

i Wiŝ+
X
i

�iŝ
>W>

i Wys

+
X
i

1

2
�2i s

>W>

y Wys

whereWy is defined similarly toWi by replacing the albedo
�i by �y. Because the variables of optimizationx̂; ŝ in f(x̂)
and ing(ŝ) are linearly related, it is sufficient to show that the
global minimum ofg(ŝ) is achieved when̂s = s. We have,

0 =
@g

@ŝ
= (
X
i

W>

i Wi)ŝ� (
X
i

�iW
>

i )Wys:

Hence, we need to show that
X
i

W>

i Wi = (
X
i

�iW
>

i )Wy :

We note that,

W>

i Wi = �2i1n1n
>

1 + :::+ �2imnmn
>

m

Thus, we need to show,

(
X
i

�2i1)n1n
>

1 + :::+ (
X
i

�2im)nmn
>

m =

(
X
i

�i�i1)�y1n1n
>

1 + :::+ (
X
i

�i�im)�ymnmn
>

m

Note that the coefficients of the left hand side are the entries of
the normalized albedo�. Thus, we need to show that

NX
i=1

�2ik = (

NX
i=1

�i�ik)�yk

for all k = 1; :::;m. But this holds, by definition, because�y
is rationally spanned by�1; :::; �N .

The proof above was not constructive, it only provided the
existence of the solution as the global minimum of the energy
function f(x̂). Findingmin f(x̂) is a simple technicality (a
linear least-squares problem), but note that the system of equa-
tions is simplified due to substitution while decoupling the role
of x̂ and the coefficients�i. This is shown below:

Theorem 2 The global minimaxo of the energy functionf(x̂)
is:

xo =

NX
i=1

�ivi

where

vi = (

NX
r=1

A>r Ar)
�1A>i ys

and the coefficients�i are determined up to a uniform scale
as the solution of the symmetric homogeneous linear system of
equations:

�iy
>

s ys � (

NX
r=1

�rvr)
>A>i ys = 0

for i = 1; :::; N

Proof:

0 =
@f

@x̂
= (
X
i

A>i Ai)x̂� (
X
i

�iA
>

i )ys

from which it follows that:

x̂ = (
X
i

A>i Ai)
�1(
X
i

�iA
>

i )ys =
X
i

�ivi:

We also have:

0 =
@f

@�i
= �iy

>

s ys � x̂>A>i ys;

which following the substitution̂x =
P

i �ivi we obtain a
homogeneous linear system for�1; :::; �N :

�iy
>

s ys � (
X
r

�rvr)
>A>i ys = 0

for i = 1; :::; N . Written explicitly,

�1(v
>

1 A
>

1 ys � y>s ys) +:::+ �Nv
>

NA
>

1 ys = 0
�1v

>

1 A
>

2 ys +:::+ �Nv
>

NA
>

2 ys = 0
: : : :
: : : :
: : : :
�1v

>

1 A
>

Nys +:::+ �N (v>NA
>

Nys � y>s ys) = 0
(3)

Let the estimation matrix (above) be denoted by F, we show
next thatF is symmetric. The entriesFij , i 6= j, have the
form:

Fij = y>s Aj(
X
r

A>r Ar)
�TA>i ys = y>s AjBA

>

i ys:
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Note thatB is a symmetric matrix (inverse of a sum of sym-
metric matrices). LetEij = AjBA

>

i , then it is easy to notice
thatEji = E>

ij due to the symmetric property ofB. Thus,
Fij = Fji because

Fij = y>s Eijys = (Eijys)
>ys = y>s E

>

ijys = Fji:

The energy functionf(x̂) in eqn. 2 consists of a simul-
taneous projection ofys onto the subspaces spanned by the
columns ofA1, columns ofA2 and so on. In addition, during
the simultaneous projection there is a choice of overall scale
per subspace — these choices of scale, the�i, are directly re-
lated to the scaling of the axes represented by�1; :::; �N such
that the albedos of the bootstrap set span (rationally) the albedo
of the novel object. WhenN = 1, the minimum off(x̂) co-
incides withx iff the albedo of the novel object is equal (up
to scale) to the albedo of bootstrap object. The more objects
in the bootstrap set the more freedom we have in representing
novel objects. If the albedos of the class of objects are random
signals, then at the limit a bootstrap set ofm objects (3m im-
ages) would be required to represent all novel objects of the
class. In practice, the difference in the albedo functions do not
cover a large spectrum and instead occupy a relatively small
subspace ofm, therefore a relatively small sizeN << m is
required, and that is tested empirically in Section 6.

Once the coefficientsx have been recovered, the quotient
imageQy can be defined against the average object: LetA be
am� 3 matrix defined by the average of the bootstrap set,

A =
1

N

NX
i=1

Ai;

and then the quotient imageQy is defined by:

Qy =
ys
Ax

:

To summarize, we describe below the algorithm for synthe-
sizing the image space of a novel objecty, given the bootstrap
set and a single imageys of y.

1. We are givenN matrices,A1; :::; AN , where each matrix
contains three images (as its columns). This is the boot-
strap set. We are also given a novel imageys (represented
as a vector of sizem, wherem is the number of pixels in
the image). For good results, make sure that the objects
in the images are roughly aligned (position of center of
mass and geometric scale).

2. ComputeN vectors (of size 3) using the equation:

vi = (
NX
r=1

A>r Ar)
�1A>i ys;

wherei = 1; :::; N .

3. Solve the homogeneous system of linear equations in
�1; :::; �N described in (3). Scale the solution such thatP

i �i = N .

4. Computex =
P

i �ivi.

5. Compute the quotient imageQy = ys=Ax, whereA is
the average ofA1; :::; AN . See [14] for more details on
noise-handling, such as when there is a division by zero.

6. The image space created by the novel object, under vary-
ing illumination, is spanned by the product of imagesQy

andAz for all choices ofz.

5 A Note About Color
The process described so far holds for black-and-white im-

ages, not color images. We describe a simple approach to han-
dle color images,while still maintaining a grey-value boot-
strap set. In other words, given a bootstrap set of grey-value
images, and a color image (represented by RGB channels)ys
of a novel object, we wish to create thecolor image space of
that object under varying illumination. To that end, we will
make the assumption that varying illumination does not affect
the saturation and hue composition of the image, only the grey-
value distribution (shades of color) of the image.

Given this assumption we first must decouple the hue, sat-
uration and grey-value (lightness) components of the image
ys from its RGB representation. This is achieved by adopt-
ing the Hue Saturation Value (HSV) color space [21] often
used for splitting color into meaningful conceptual categories.
The transformation (non-linear) from RGB to HSV and vice
versa can be found, for example, in MATLAB. The HSV rep-
resentation decouples the color information into three channels
(images): Hue (tint, or color bias), Saturation (amount of hue
present — decreasing saturation corresponds to adding white
pigment to a color), and Value (the luminance, or black-and-
white information; the diagonal from(1; 1; 1) to (0; 0; 0) of
the RGB cube). Saturation can vary from a maximum corre-
sponding to vivid color, to a minimum, which is equivalent to
black-and-white image. Once the H,S, and V images are cre-
ated (from the R,G,B images), the novel image we work with is
simplyV . The algorithm above is applied and a synthetic im-
ageV 0 is created (a new image of the object under some novel
illumination condition). The corresponding color image is the
original H,S and the new V’. Similar approaches for augment-
ing black-and-white images using a color prototype image can
be found in [15].

This approach allows using only grey-level images in the
bootstrap set, yet accommodates the synthesis of color images
from a novel color input image. Fig. 8 display examples on
synthesizing color images from a grey-value bootstrap set.

6 Experiments
We have conducted a wide range of experimentation on

the algorithm presented above. We first used a high qual-
ity database prepared by Thomas Vetter and his associates
[25, 24]. We have chosen a bootstrap collection of 10 objects
shown in Fig. 2. The images of the bootstrap set and the novel
images to be tested are “roughly” aligned, which means that
the center of mass was aligned and scale was corrected (man-
ually).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2. The bootstrap set of 10 objects from Vetter’s database of 200 objects.

Our first test, shown in Fig 3, was to empirically verify that
the quotient image is indeed invariant to illumination changes.
The Q-images where thresholded (above one standard devia-
tion) for display purposes. One can see that with a bootstrap
set of 10 objects one obtains a fairly invariant quotient image
in spite of the large variation in the illumination of the novel
images tested. The Q-images should also be invariant to the
choice of the light sourcess1; s2; s3 used in the bootstrap set.
This is demonstrated in Fig. 5 where the quotient image was
generated against different choices ofs1; s2; s3 for the boot-
strap object set (Vetter’s database includes 9 images per object
thus enabling us to experiment with various bootstrap sets of
the same 10 objects). Note that the novel image that was tested
was not part of Vetter’s database but an image of one of our lab
members.

The next experiment was designed to test the role of the
size of the bootstrap set on the accurate determination of the
coefficientsx = (x1; x2; x3). The accuracy of the coefficient
vectorx is measured by the invariance of the quotient image
against varying illumination, hence Fig. 4 displays Q-images
generated by various bootstrap sets, as follows. We have tested
the caseN = 1, i.e., bootstrap set of a single object (row b),
compared to a bootstrap set ofN = 10 but where the refer-
ence object is the same object used in caseN = 1 (instead
of the average object), shown in row (f). Therefore, the dif-
ference between rows (c) and (f) is solely due to the effect of
Theorem 1 on computing the coefficient vectorx. The result
supports the claim of Theorem 1 in the sense that the larger the
bootstrap set the more accurate is the recovery ofx. In order
to rule out any special influence the average object has on the
process (recall that oncex has been recovered it was suggested
to use the average object as the reference object for the quo-
tient image) we have also tested the caseN = 1 where the
images were deliberately blurred (to simulate an average ob-
ject), yet the Q-images (row d) have not improved (compared
to row c).

In Figs. 6 and 7 we demonstrate the results of image syn-
thesis from a single input image and the bootstrap set. Note
the quality and the comparison between results of bootstrap
sizeN = 10 andN = 2 (there are differences but relatively
small).

Figure 5. Q-images should be invariant to the 3 illumination
conditions of the database images, as long as they span a 3 Di-
mensional subspace. The 3 Q-images were generated against
different bootstrap sets of the same 10 objects but of different
triplets of light sources. Note that the novel object is not part
of the original database of 200 objects, but of a member of our
lab.

So far we have experimented with objects and their images
from the same database of 200 objects. Even though the input
image is of an object outside the bootstrap set, there is still an
advantage by having all the images taken with the same cam-
era, same conditions and same quality level. Our next exper-
iments were designed to test the algorithm on source images
taken from sporadic sources, such as from magazines or from
the Web. The bootstrap set in all experiments is the one dis-
played in Fig. 2.

Fig. 8 shows four novel (color) images of celebrity people
(from magazines) and the result of the synthesis procedure.
These images are clearly outside the circle of images of the
original database of Vetter, for example the images are not
cropped for hair adjustment and the facial details are markedly
different from those in the bootstrap set. Finally, we have
experimented with other bootstrap sets shown in Fig. 9a. A
bootstrap set of three objects varying in hair-style, uncropped,
and generally taken under much less attention compared to the
bootstrap set of Fig. 2 is sufficient, nevertheless, to generate
quite reasonable re-renderings as shown in Fig. 9d. The degra-
dation is indeed graceful and affects mainly the degree of il-
lumination changes, not as much the quality of the resulting
image (compared to the source image).

6.1 When Does the Algorithm Fail?

An inherent assumption throughout the algorithm is that for
a given pixel(x; y), n(x; y) is the same for all the images —

7



�D�

�E�

Figure 3. Testing the invariance of the quotient image to varying illumination. (a) Original images of a novel face taken under 5 different
illuminations. (b) The Q-images corresponding to the novel images above computed with respect to the bootstrap set of Fig. 2.

�E�

�F�

�D�

�I�

�H�

�G�

Figure 4. Testing accuracy of Theorem 1 against the size of the bootstrap set. (a) Original images taken under 4 distinct light conditions.
(b) Bootstrap set ofN = 1 objects used for generating the Q-images of (a) displayed in row (c). Note that the quotient images are not
strictly invariant as they change with the illumination. (d) Q-images of the bootstrap set (N = 1) displayed in (e). Note that the bootstrap
set is blurred in order to test whether using the “average” object whenN > 1 makes a difference compared to the machinery described in
Theorem 1. We see that blurred images do not improve the invariance of the Q-images. (f) Q-images of (a) against the object (b) but where
the coefficient vectorx was recovered using theN = 10 bootstrap set of Fig. 2. The comparison should be made between rows (c) and (f).
Note that in (f) the images are invariant to changing illumination more so than in (c).

�D� �E� �F� �G� �H�

�I� �J� �K� �L� �M� �N�

Figure 6. Image Synthesis Example. (a) Original image and its quotient image (b) from theN = 10 bootstrap set. The quotient image
is generated relative to the average object of the bootstrap set shown in (c),(d) and (e). Images (f) through (k) are synthetic images created
from (b) and (c),(d), (e) using Proposition 1.
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Figure 7. Image synthesis examples. (a) Original images under 3 distinct lighting conditions and the synthesized images (b) using linear
combinations of those 3 images. The synthesized images using the original single image (c) and aN = 10 bootstrap set are shown in (d).
Finally, (e) is anN = 2 bootstrap set for generating the synthesized images (f) from the single original image (c).

�D� �E� �F� �G� �H� �I� �J�

Figure 8. (a)original color images. (b) Q images(c)-(g) Synthesized images
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Figure 9. Image synthesis using other, lower quality, bootstrap sets (Yale data sets). The bootstrap set (N = 3) is shown in (a). Note
that the objects vary considerably in appearance (hair style and facial hair) and are thus less controlled as in Vetter’s data set. The source
image (b), its quotient image (c) and synthesized images (d).

the bootstrap set as well as the test images. This was referred
to in the paper as theideal class assumption. We have seen
that the performance for faces is fairly robust despite the fact
the ideal class assumption does not strictly hold for roughly
aligned images of faces. The performance degrades when
dominant features between the bootstrap set and the test set
are misaligned. This could arise in a variety of situations such
as (i) the class is of non-smooth objects like objects with sharp
corners (chairs, for instance), (ii) objects are seen from vary-
ing viewing positions (see [22] for handling such cases with
the Qimage approach), and (iii) the class of objects is smooth
(like human faces) but gross misalignment is caused by facial
expressions, mustache, eye-glasses, etc.

7 Other Routes for a Signature Image?
The quotient image approach is based on the idea that an

illumination invariant imageQ = �y=�a can be used to map
the image space of objecta to the image space of objecty
using a single imageys of y. The equation(

P
j xjaj) 
 Q

generates the image space ofy (Proposition 1). There are two
points worth making.

First,Q is analogous to an ”error correction term”. How-
ever, it is important to distinguish between error correction and
an illumination invariant term. For example, letŷ be the re-
constructed image ofys from the bootstrap set (after solving
for x; �i that minimize eqn. 1 in the “reconstructionist” ap-
proach), and let�Q be defined such thatys = ŷ 
 �Q. There
is no reason to expect that�Q would be illumination invariant.
This is demonstrated in Fig. 10b showing that the�Q images
are not invariant to changing illumination. In other words, one
would not obtain an admissible image space ofy, or correct
re-rendering, if we simply correct for the reconstruction error
by a Cartesian product with�Q.

Second, notice that the optimization criteria described in
Theorem 1 involves a somewhat complex definition of what
constitutes a “family” of albedo functions (rational span). This
is unlike the more intuitive definition, that one would typi-
cally adopt under such circumstances, that albedo functions
are closed under linear combinations (the definition adopted

in the optimization criteria behind eqn. 1 for the “reconstruc-
tionist” approach). However, the rational span definition has
an important role because through it we were able to remove
of the intrinsic bilinearity among the illumination parameters
x = (x1; x2; x3) and the albedo parameters�1; :::; �N and ob-
tain a linear system forN + 3 variables (instead of3N if the
linear span definition were to be adopted). The importance of
all this, depends on the numerical behavior of the system. In
principle, however, one could solve forx from eqn. 1 and use it
for obtaining the quotient image as defined in Proposition 1. In
other words, in the algorithm described in the previous section,
simply replace steps 2–4 with the procedure described in Sec-
tion 3 for obtainingx. We expect a degradation in performance
due to numerical considerations (due to the enlargement of
parameter space). The results of doing so are illustrated in
Fig. 10c. The quotient images clearly show a dependence on
illumination change, indicating that the parametersx1; x2; x3
were not recovered well.

In summary, the combination of an illumination invariant
correction term (the quotient image) and a simple optimization
criteria (eqn. 1) — with the price of somewhat complicating
the definition of when albedos form a “family” — gives rise to
both practical and a provenly correct procedure for class-based
re-rendering (under the terms stated of ideal class definition
and Lambertian surfaces).

8 Recognition
The Q-images are illumination invariant signatures of the

objects in the class. We can therefore make use of the invari-
ance property for purposes of recognition. Vetter’s data base
contains 200 faces each under 9 lighting conditions, making
a total of 1800 images. We used a bootstrap set of 20 ob-
jects (60 images) and created the Q-images of all the 200 ob-
jects — these 200 images serve as the database, we refer to
as Q-database, for purposes of recognition. Given any of the
1800 source images, its Q-image is created from the bootstrap
set and matched (by correlation) against the Q-database while
searching for the best match.

We made two tests (summarized in Fig. 11). In the first test
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Figure 10. Alternatives approaches for a quotient image. (a) original images under varying illumination. (b) Quotient images defined as
a multiplicative ”error” image, i.e., the ratio of the original image and the least-squares reconstnructed image from the bootstrap set. Note
that the resulting quotient images are not illumination invariant. (c) Quotient images defined by Proposition 1 wherex is the minima of
eqn. 1 (instead of eqn. 2). Again the images are not illumination invariant.

the Q-database was generated from images under the same il-
lumination (we have 9 images per object in Vetter’s database).
The results of recognition was compared to correlation where
the database for correlation where those images used for cre-
ating the Q-database. The match against the Q-database was
error free (0%). The match against the original images, instead
of the Q-images, had 142 mismatches (7:8%). In the second
test the images used for creating the Q-database were drawn
randomly from the set of 9 images (per object). The match
against the Q-database produced only 6 mismatches (0:33%),
whereas the match against the original images produced 565
mismatches (31:39%). The sharp increase in the rate of mis-
matches for the regular correlation approach is due to the dom-
inance of illumination effects on the overall brightness distri-
bution of the image (cf. [19, 1]).

We also made a comparison against the “eigenfaces” ap-
proach [20, 11] which involves representing the database by
its Principle Components (PCA). In the first test, the PCA was
applied to the bootstrap set (60 images) and 180 additional
images, one per object. In the first test the additional images
were all under the same illumination, and in the second test
they were drawn randomly from the set of 9 images per ob-
ject. The recognition performance depends on the number of
principle components. With 30 principle components (out of
240) the first test had 25 mismatches(1:4%), and the second
test 120 mismatches(6:6%). The performance peaks around
50 principle components in which case the first test was error

��

��

���

���

���

���

���

���

VDPH
LOO�

YDU\LQJ
LOO

4�PHWKRG

&RUUHODWLRQ

��

��

��

��

��

��

��

��

VDPH�LOO� YDU\LQJ
LOO

4�PHWKRG

3&$����HY

3&$����HY

�D� �E�

Figure 11. Recognition results on Vetter’s database of 1800
face images. We compare the Q-image method with correla-
tion and Eigenfaces. See text for details.

free (like in the Q-image method), and the second test had 18
mismatches(1%).

To summarize, in all recognition tests, except one test of
equal performance with PCA, the Q-image outperforms and in
some cases in a significant manner, conventional class-based
approaches.

9 Summary
We have presented a class-based, image-based, re-

rendering and recognition method. The key element of our
approach was to show that under fairly general circumstances
it is possible to extract from a small set of example images an
illumination invariant “signature” image per novel object of
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the class from a single input image alone. We have proven our
results (under the ”imaginary” world of ideal class assump-
tion) and demonstrated the applicability of our algorithm on
the class of real pictures of human faces. In other words, we
have shown that in practice a remarkably small number of sam-
ple images of human frontal faces (in some of our experiments
images of two objects were sufficient for making a database)
can generate photo-realistic re-rendering of new objects from
single images.

The ideas presented in this paper can, without too much
difficulty, be turned onto a system for image compositing and
relighting of general faces, with very high quality of perfor-
mance. To that end, further implementation elements may
be required, such as using collections of bootstrap sets (while
choosing among them manually or automatically using sparse
optimization approaches like Support Vector Machines [23]),
and automatic or semi-automatic tools for morphing the boot-
strap set onto the novel image in order to better compensate
for changes of shape (such as [25]).
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