Stanislav (Stas) Derevyanko

Associate Professor

S. Derevyanko
Department of Electrical & Computer Engineering 

Ben-Gurion University of the Negev

ORCID iD: https://orcid.org/0000-0001-5585-0430
E-mail: stasd*at*bgu(dot)ac(dot)il

Tel: +972-8-6477988

Fax: +972-8-6479401

Office: Building 33, Room 209
Mission statement

I am a theoretical physicist by training and I have spent most of my career looking at nonlinear and/or disordered systems.

From high energy beams scattering in a disordered medium to Shannon informational capacity of the modern day optical fibre communications scientists and engineers have to look at and describe the systems that are affected both by nonlinearity and noise. While the area of high power and high signal-to-noise ratio is studied by the nonlinear physics (with many achievements to its credit) the opposite limit deals with fully disordered systems and/or incoherent pulses and is the subject of the general theory of disordered systems. The grey area in between, when both signal and noise contribute equally to the dynamics of the system remains one of the main challenges for both physicists and engineers.

Most of my current research activities (as listed below) deal with the interplay of nonlinearity and disorder in one way or another. From optical telecommunications to thermalization in coupled waveguides and from information theory to machine learning - they all have one thing in common: they are enormous fun!

New! Four final year projects are available for 2023/24. Click here for PPT slides and here for the recording.

Main research interests

Current students and postdocs


Former students and postdocs


A short bio sketch

I received my M. Sc. in theoretical physics (first class honours, summa cum laude) in July, 1999 at Kharkov State University in Ukraine and the Ph.D. in the same area in September, 2001 at the Institute for Radiophysics and Electronics,  Kharkov, Ukraine. From January 2002 to September 2007 I was a research fellow at Photonics Research Group at Aston University, Birmingham, UK. From October 2007 to September 2012 I was an EPSRC Advanced Fellow first at the Photonics Research Group and later at Mathematics Group at Aston University. In 2012 I moved to Israel where I won a Marie Curie Inter-European fellowship at Weizmann Institute of Science from April 2013 to March 2015. In October 2015 I joined School of Electrical and Computer Engineering at Ben Gurion University in the Negev where I am currently holding a rank of an associate professor (now hapily tenured!)

Current courses taught


Publications (Conference proceedings not included)
  • R. Navitskaya, I. Staskevich, S. Derevyanko, and A. Karabchevsky,  Spatial rogue waves in the actively Q-switched Nd:YAG laser under low Kerr nonlinearity, Opt. Express 30, 37076 (2022).
  • M. Spector and S. Derevyanko,  Controlling surface plasmon polariton losses in the visible spectrum by temperature-induced interband transitions, Phys. Rev. B 106, 125111 (2022).
  • M. Balogun and S. Derevyanko,  Enhancing the Spectral Efficiency of Nonlinear Frequency Division Multiplexing Systems via Hermite-Gaussian Subcarriers, J. Lightwave. Technol. 40, 6071 (2022).
  • O. Aluf and S. Derevyanko,  Shaping Gain for Optical Fiber Communication Systems Employing the Nonlinear Fourier Transform, IEEE Photonic. Tech, L.. 34, 383 (2022).
  • M. Balogun and S. Derevyanko,  Hermite-Gaussian Nonlinear Spectral Carriers for Optical Communication Systems Employing the Nonlinear Fourier Transform, IEEE Commun. Lett. 26, 109 (2021).
  • R. Navitskaya, I. Stashkevich, S. Derevyanko and A. Karabchevsky,  Experimental demonstration of spatial rogue waves in the passively Q-switched Nd:YAG laser, Opt. Lett. 46, 3773 (2021).
  • S.A. Derevyanko, M. Balogun, O. Aluf, D. Shepelsky and J.E. Prilepsky, Channel model and the achievable information rates of the optical nonlinear frequency division-multiplexed systems employing continuous b-modulation , Opt. Express 29, 6384 (2021).
  • M. Spector and  S. Derevyanko, Transient temperature induced plasmonic crystal , Phys. Rev. B 102, 174308 (2020).
  • M. Pankratova, A. Vasylchenkova, S.A. Derevyanko, N.B. Chichkov, and J.E. Prilepsky, Signal-Noise Interaction in Optical-Fiber Communication Systems Employing Nonlinear Frequency-Division Multiplexing , Phys. Rev. Applied 13, 054021 (2020).
  • S.Derevyanko, Disorder-aided pulse stabilization in dissipative synthetic photonic lattices, Sci. Rep. 9 , 12883  (2019).
  • A.V. Pankov, I.D. Vatnik, D.V. Churkin, and S.A. Derevyanko, Anderson localization in synthetic photonic lattice with random coupling, Opt. Express 27, 4424 (2019).
  • N.A. Shevchenko, S.A. Derevyanko, J.E. Prilepsky,A. Alvarado, P. Bayvel, and S.K. Turitsyn, Capacity Lower Bounds of the Noncentral Chi-Channel With Applications to Soliton Amplitude Modulation,  IEEE T. Commun. 66, 2978 (2018).
  • S.Derevyanko, A. Redyuk, S. Vergeles, and S. Turitsyn, Visualisation of extreme value events in optical communications, APL Photonics 3 , 060801  (2018).
  • S.Derevyanko, Anderson localization of a one-dimensional quantum walker, Sci. Rep. 8 , 1795 (2018).
  • H. Frostig, E. Small, A. Daniel, P. Oulevey, S.Derevyanko, and Y. Silberberg , Focusing light by wavefront shaping through disorder and nonlinearity , Optica 4 , 1073 (2017).
  • S.K. Turitsyn, J.E. Prilepsky, S.T. Le, S. Wahls, L.L. Frumin, M. Kamalian, and S.A. Derevyanko, Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives, Optica 4 , 307 (2017).
  • S.A. Derevyanko, Self-accelerating fronts in passively-mode-locked fiber lasers, Phys. Rev. A. 95, 013802 (2017).
  • S.A Derevyanko, J.E. Prilepsky and S.K. Turitsyn, Capacity estimates for optical transmission based on the nonlinear Fourier transform, Nat. Commun. 7, 12710 (2016).
  • U.Levy, S. Derevyanko, Y. Silberberg, Light Modes of Free Space, Prog. Optics, 61, 237 (2016).
  • N.A. Shevchenko, J.E. Prilepsky, S.A. Derevyanko, A. Alvarado, P. Bayvel, S.K. Turitsyn, A Lower Bound on the per Soliton Capacity of the Nonlinear Optical Fibre Channel, Information Theory Workshop - Fall (ITW), 2015 IEEE, pp.104-108; arXiv:1508.04726 (2015).
  • S. Derevyanko and D. Waltner, Non-adiabatic quantum pumping by a randomly moving quantum dot, J. Phys. A.: Math. Theor. 48, 305302 (2015).
  • J.E. Prilepsky, S.A. Derevyanko, K.J. Blow, I. Gabitov, and S.K. Turitsyn, Nonlinear Inverse Synthesis and Eigenvalue Division Multiplexing in Optical Fiber Channels, Phys. Rev. Lett.  113, 013901 (2014).
  • M. Johansson, J.E. Prilepsky and S.A.Derevyanko, Strongly localized moving discrete dissipative breather-solitons in Kerr nonlinear media supported by intrinsic gain , Phys. Rev. E 89, 042912 (2014).
  • J.E. Prilepsky, S.A. Derevyanko and S.K. Turitsyn, Nonlinear spectral management: linearization of the lossless fiber channel, Opt. Express 21, 24344 (2013).
  • S.A. Derevyanko, Thermalized polarization dynamics of a discrete optical-waveguide system with four-wave mixing, Phys. Rev. A. 88, 033851 (2013).
  • J.E. Prilepsky, A.V. Yulin, M. Johansson, M., and S.A. Derevyanko, Discrete solitons in coupled active lasing cavities, Opt. Lett. 37,4600 (2012).
  • S. Turitsyn, M. Sorokina, and S. Derevyanko, Dispersion-dominated nonlinear fiber optic channel, Opt Lett. 37, 2931 (2012).
  •  S. Derevyanko and E. Small,  Nonlinear propagation of an optical speckle field, Phys. Rev. A. 85, 053816 (2012).
  • J.E. Prilepsky, S.A. Derevyanko, and S.K. Turitsyn, Temporal solitonic crystals and non-Hermitian informational lattices, Phys. Rev. Lett. 108, 183902 (2012).
  • J.E. Prilepsky, S.A. Derevyanko, and S.K. Turitsyn, Lattice approach to the dynamics of phase-coded soliton trains, J. Phys. A-Math.Theor. 45, 025202 (2012).
  • N. Vladimirova, S. Derevyanko, and G. Falkovich, Phase transitions in wave turbulence, Phys. Rev. E. 85, 010101(R) (2012).
  •  J.E. Prilepsky, S.A. Derevyanko, and S.A. Gredeskul, Controlling soliton refraction in optical lattices, Phys. Rev. Lett. 107, 083901 (2011).
  •  S.A. Derevyanko, Appearance of bound states in random potentials with applications to soliton theory, Phys. Rev. E. 84, 016601 (2011).
  •  S. Gnutzmann, U. Smilansky, and S.A. Derevyanko, Stationary scattering from a nonlinear network, Phys. Rev. A. 83, 033831 (2011).
  • S.A. Gredeskul, S.A. Derevyanko, A.S. Kovalev, and J.E. Prilepsky, Soliton propagation through a disordered system: Statistics of the transmission delay, Phys. Rev. E. 81, 036608 (2010).
  • S.K. Turitsyn and S.A. Derevyanko, Soliton-based discriminator of noncoherent optical pulses, Phys. Rev. A. 78, 063819 (2008).
  • S. Derevyanko, The (n + 1)/2 rule for dealiasing in the Split-Step Fourier methods for n-wave interactions, IEEE Photonic. Tech. L. 20, 1929 (2008).
  •  S.A. Derevyanko, Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index, Opt. Lett. 33, 2404 (2008).
  •  S.A. Derevyanko and J.E.  Prilepsky, Random input problem for the nonlinear Schrodinger equation, Phys. Rev. E. 78, 046610 (2008).
  •  S.A. Derevyanko and J.E.  Prilepsky, Soliton generation from randomly modulated return-to-zero pulses, Opt. Commun. 281, 5439 (2008). 
  •  S. Derevyanko, G. Falkovich, and S. Turitsyn, Evolution of nonuniformly seeded warm clouds in idealized turbulent conditions, New. J. Phys. 10, 075019 (2008).
  •  J.E. Prilepsky, S.A. Derevyanko, and S.K. Turitsyn, Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasi-lossless and lossy optical fiber spans, J. Opt. Soc. Am. B. 24, 1254 (2007).
  •  J.E. Prilepsky and S.A. Derevyanko,  Breakup of a multisoliton state of the linearly damped nonlinear Schrödinger equation, Phys. Rev. E 75036616  (2007).
  •  S.A. Derevyanko, G. Falkovich, K. Turitsyn, and S. Turitsyn, Lagrangian and Eulerian descriptions of inertial particles in random flows, J. Turbul. 8, 1 (2007).
  •  S. Derevyanko and S. Turitsyn, Bit-error probability for direct detection of optical RZ signal degraded by ASE noise and timing jitter, J. Lightwave Technol. 25, 638 (2007).
  •  S.A. Derevyanko, J.E. Prilepsky, and D.A. Yakushev, Statistics of a noise-driven Manakov soliton, J. Phys. A: Math. Gen. 391297  (2006).
  •  S.A. Derevyanko, S.K. Turitsyn, and D.A. Yakushev, Fokker-Planck equation approach to the description of soliton statistics in optical fiber transmission systems, J. Opt. Soc. Am. B. 22, 743 (2005).
  •   K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich and S. K. Turitsyn, Information capacity of optical fiber channels with zero average dispersion, Phys. Rev. Lett. 91, 203091 (2003).
  •   S.A. Derevyanko, S.K. Turitsyn, and D.A. Yakushev, Non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emissionOpt. Lett. 282097  (2003).


  • Chapters in books:

  •   J.E. Prilepsky, S.A. Derevyanko, and S.K. Turitsyn, Nonlinear Fourier Transform-Based Optical Transmission: Methods for Capacity Estimation, in. A. Ellis and M. Sorokina (Eds),  Optical Communication Systems: Limits and Possibilities, Jenny Stanford Publishing. pp 243-273 (2019). 

  • Research  grants

    1)    Title:  "Data aided mitigation of nonlinearity in optical fiber telecommunications"

           Grant type:  Research Grant

           Funding body:   The Israeli Science Foundation

           Duration:  10.2021 —09.2025

           Award value:  480,000 NIS

           Project role:  PI 

    2)    Title:  "Simultaneous electronic compensation of dispersion and nonlinearity effects in telecommunication systems"

           Grant type:  Research Grant

           Funding body:   The Israeli ministry of industry and commerce –KAMIN program

           Duration:  09.2020 —08.2021

           Award value:  207,466 NIS

           Project role:  PI 

    3)   Title:  "Increasing the informational capacity of optical networks by means of the Nonlinear Fourier Transform"

           Grant type:  Research Grant

           Funding body:   The Israeli Science Foundation

           Duration:  10.2018 —09.2021

           Award value:  600,000 NIS

           Project role:  PI 

    4)   Title:  "Interaction of Nonlinearity and Disorder: Gateways to Optics"

           Grant type:  Marie Curie Intra-European Fellowship

           Funding body:  European FP7 program

           Duration:  04.2013 —03.2015

           Award value:   227,231 EUR

           Project role:  Marie Curie Fellow (Hosted by Prof. Yaron Silberberg's group at Weizmann Institute of Science)

    5)   Title:  "Evaluation and harnessing of noise in telecommunication systems"

           Grant type:  Advanced Fellowship

           Funding body:  EPSRC (UK).

           Duration:  10.2007 —09.2012

           Award value:   552,188 GBP

           Project role:  PI 



    Last revised: 1.12.2022.