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Active Hypothesis Testing for Anomaly Detection
Kobi Cohen and Qing Zhao, Fellow, IEEE

Abstract— The problem of detecting a single anomalous
process among a finite number M of processes is considered.
At each time, a subset of the processes can be observed, and
the observations from each chosen process follow two different
distributions, depending on whether the process is normal or
abnormal. The objective is a sequential search strategy that mini-
mizes the expected detection time subject to an error probability
constraint. This problem can be considered as a special case
of active hypothesis testing first considered by Chernoff where
a randomized strategy, referred to as the Chernoff test, was
proposed and shown to be asymptotically (as the error probability
approaches zero) optimal. For the special case considered in
this paper, we show that a simple deterministic test achieves
asymptotic optimality and offers better performance in the finite
regime. We further extend the problem to the case where multiple
anomalous processes are present. In particular, we examine the
case where only an upper bound on the number of anomalous
processes is known.

Index Terms— Sequential detection, anomaly detection,
dynamic search, active hypothesis testing, controlled
sensing.

I. INTRODUCTION

WE CONSIDER the problem of detecting a single
anomalous process among M processes. Borrowing

terminologies from target search, we refer to these processes
as cells and the anomalous process as the target which can
locate in any of the M cells. The decision maker is allowed
to search for the target over K cells at a time (1 ≤ K ≤ M).
The observations from searching a cell are i.i.d. realizations
drawn from two different distributions f and g, depending
on whether the target is absent or present. The objective is a
sequential search strategy that dynamically determines which
cells to search at each time and when to terminate the search
so that the expected detection time is minimized under a
constraint on the probability of declaring a wrong location
of the target.

The problem under study applies to intrusion detection in
cyber-systems when an intrusion to a subnet has been detected
and the objective is to locate the abnormal component in
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the subnet (since the probability of each component being
compromised is small, with high probability, there is only
one abnormal component). It also finds applications in target
search, fraud detection, and spectrum scanning in cognitive
radio networks.

A. A Case of Active Hypothesis Testing

The above problem is a special case of the sequential exper-
iment design problem first studied by Chernoff in 1959 [1].
Compared with the classic sequential hypothesis testing
pioneered by Wald [2] where the observation model under each
hypothesis is predetermined, the sequential design of experi-
ments has a control aspect that allows the decision maker to
choose the experiment to be conducted at each time. Different
experiments generate observations from different distributions
under each hypothesis. Intuitively, as more observations are
gathered, the decision maker becomes more certain about
the true hypothesis, which in turn leads to better choices of
experiments. Chernoff focused on the case of binary hypothe-
ses and showed that a randomized strategy, referred to as
the Chernoff test, is asymptotically optimal as the maximum
error probability diminishes. Specifically, the Chernoff test
chooses the current experiment based on a distribution that
depends on past actions and observations. Variations and
extensions of the problem and the Chernoff test were studied
in [3]–[8], where the problem was referred to as controlled
sensing for hypothesis testing in [4]–[6] and active hypoth-
esis testing in [7] and [8] (see a more detailed discussion
in Section I-C).

It is not difficult to see that the anomaly detection problem
considered in this paper is a special case of the active hypoth-
esis testing problem considered in [1], [3]–[5], [7], and [8].
In particular, under each hypothesis that the target is located
in a particular cell, the distribution (either f or g) of the next
observation depends on the cell chosen to be searched. The
Chernoff test and its variations proposed in [3]–[5], [7], and [8]
thus directly apply to our problem. However, in contrast to the
randomized nature of the Chernoff test and its variations, we
show in this paper that a simple deterministic test achieves
asymptotic optimality and offers better performance in the
finite regime.

B. Main Results

Similar to [1], [3]–[5], and [7], we focus on asymptotically
optimal policies in terms of minimizing the detection time
as the error probability approaches zero. The asymptotic
optimality of the Chernoff test as shown in [1] requires
that under any experiment, any pair of hypotheses are
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distinguishable (i.e., has positive Kullback-Liebler (KL)
divergence). This assumption does not hold in the anomaly
detection problem considered in this paper. For instance,
under the experiment of searching the i th cell, the hypotheses
of the target being in the j th ( j �= i ) and the kth (k �= i )
cells yield the same observation distribution f . Nevertheless,
we show in Theorem 2 that the Chernoff test preserves its
asymptotic optimality for the problem at hand even without
this positivity assumption on all KL divergences. As a result,
it serves as a bench mark for comparison.

The Chernoff test, when applied directly to the anomaly
detection problem, leads to a randomized cell selection rule:
the cells to be searched at the current time are drawn randomly
according to a distribution determined by past observations and
actions. The main result of this paper is to show that a simple
deterministic policy offers the same asymptotic optimality
yet with significant performance gain in the finite regime and
considerable reduction in implementation complexity.
Specifically, under the proposed policy, the selection rule
φ(n) indicating which K cells should be searched at time n is
given by:

φ(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m(1)(n), m(2)(n), ..., m(K )(n)

)
,

if D(g|| f ) ≥ D( f ||g)
(M−1) or K = M

(
m(2)(n), m(3)(n), . . . , m(K+1)(n)

)
,

if D(g|| f ) < D( f ||g)
(M−1) and K < M

where m(i)(n) denotes the cell index with the i th highest
sum of log-likelihood ratio (LLR) collected from this cell
up to time n, and D(·||·) is the KL divergence between two
distributions. Since D(g|| f ) is the key quantity in the cell
selection rule, we refer to the proposed deterministic policy
as the DGF policy.

This deterministic selection rule is intuitively satisfying.
Consider, for example, K = 1. In this case, the DGF policy
selects, at each time, either the cell with the largest sum LLRs
or the cell with the second largest sum LLRs, depending on
the order of D(g|| f ) and D( f ||g)/(M − 1). The intuition
behind this selection rule is that D(g|| f ) and D( f ||g)/(M−1)
determine, respectively, the rates at which the state of the cell
with the target and the states of the M − 1 cells without
the target can be accurately inferred. Based on the order of
these two rates, the DGF policy aims at identifying either the
cell with the target or those M − 1 cells without the target.
The selection rule is thus clear by noticing that searching the
cell with the second largest sum LLRs will lead to sufficient
exploration of all M − 1 cells without the target since the less
explored cells tend to have higher sum LLRs among these
M − 1 cells. A more detailed discussion of the DGF policy
and a rigorous proof of its asymptotic optimality are given
in Section III.

We then extend the problem to the case where multiple
anomalous processes are present. In particular, we examine
the case where only an upper bound on the number of
anomalous processes is known. Interestingly, we show that
the Chernoff test may not be practically appealing under the
latter setting. We thus consider a modified Bayes risk that
better captures the design objective of practical systems and

develop a deterministic policy that is again asymptotically
optimal.

C. Related Work

Chernoff’s pioneer work on active hypothesis testing
focuses on sequential binary composite hypothesis testing [1].
The extension to M-ary hypothesis was given by Bessler in [3].
In [5], Nitinawarat et al. considered M-ary active hypothesis
testing in both fixed sample size and sequential settings.
Under the sequential setting, they developed a modified
Chernoff test that is asymptotically optimal without the
positivity assumption on all KL divergences as required
in [1] and [3]. Furthermore, they examined the asymptotic
optimality of the Chernoff test under constraints on decision
risks, a stronger condition than the error probability, and
developed a modified Chernoff test to meet hard constraints on
the decision risks. In [6], a more general model of Markovian
Observations and non-uniform control cost was considered.
In [7], in addition to the asymptotic optimality adopted by
Chernoff in [1], Naghshvar and Javidi examined active sequen-
tial hypothesis testing under the notion of non-zero infor-
mation acquisition rate by letting the number of hypotheses
approach infinity and under a stronger notion of asymptotic
optimality. They further studied in [8] the roles of sequentiality
and adaptivity in active hypothesis testing by characterizing
the gain of sequential tests over fixed sample size tests and
the gain of closed-loop policies over open-loop policies.

Target search or target whereabout problems have been
widely studied under various scenarios. Results under the
sequential setting can be found in [9]–[12], all assuming
single process observations (i.e., K = 1). Specifically, optimal
policies were derived in [9]–[11] for the problem of quickest
search over Weiner processes. In [12], an optimal search
strategy was established under the constraint that switching
to a new process is allowed only when the state of the
currently probed process is declared. Optimal policies under
general distributions or with general multi-process probing
strategies remain an open question. In this paper we address
these questions under the asymptotic regime as the error
probability approaches zero. Target search with a fixed sample
size was considered in [13]–[16]. In [13]–[15], searching
in a specific location provides a binary-valued measurement
regarding the presence or absence of the target. Similar to this
paper, Castanon considered in [16] continuous observations:
the observations from a location without the target and with
the target have distributions f and g, respectively. Different
from this paper where we consider sequential settings and
obtain an asymptotically optimal policy that applies to general
distributions, [16] focused on the fixed sample size setting
and required a symmetry assumption on the distributions
(specifically, f (x) = g(b − x) for some b) for the optimality
of the proposed policy. The problem of universal outlier
hypothesis testing was studied in [17]. Under this setting, a
vector of observations containing coordinates with an outlier
distribution is observed at each given time. The goal is to
detect the coordinates with the outlier distribution based on a
sequence of n i.i.d. vectors of observations.
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Another set of related work is concerned with sequential
detection over multiple independent processes [18]–[32].
In particular, in [22], the problem of identifying the first abnor-
mal sequence among an infinite number of i.i.d. sequences
was considered. An optimal cumulative sum (CUSUM)
test was established under this setting. Further studies on
this model can be found in [23]–[25]. While the objec-
tive of finding rare events or a single target considered
in [22]–[25] is similar to that of this paper, the main difference
is that in [22]–[25] the search is done over an infinite number
of i.i.d processes, where the state of each process (normal
or abnormal) is independent of other processes. Under this
independence assumption, the structure of the solution is to
perform an independent sequential test without memory for
each process. At each time when the decision maker decides
to switch to a different process, the new process is chosen
arbitrarily, and a sequential test starts afresh. In this paper,
however, the number of the processes is finite and the number
of the abnormal ones is known (or an upper bound is known).
As a result, the process states are correlated. Under this model,
the selection rule that governs which process to observe at
each time is crucial in minimizing the detection delay, whereas
in [22]–[25] the order at which the processes are observed is
irrelevant. Furthermore, in our model, the sequential tests for
the processes have memory. When a process is revisited, all
the observations obtained during previous visits are taken into
consideration in decision making.

Another related problem considered recently deals with
detecting the first disorder of a system involving multiple
processes [19], [21], [26], [29]. In this problem, multiple sen-
sors take observations sequentially from the environment and
communicate with a fusion center, which determines whether
there is a change in the statistical behavior of the observations.
The asymptotic optimality of the multi-chart CUSUMs in
detecting the first change-point was studied as the mean time
between false alarms approaches to infinity. In [19], asymp-
totic optimality was shown under one-shot schemes, in which
the sensors communicate with the fusion center only when
they signal an alarm. A Bayesian version of this problem was
considered in [21] under the assumption that the fusion center
has perfect information about the observations and a priori
knowledge of the statistics of the change process. In [26],
the problem was examined for the case where an unknown
subset of sensors are compromised and a fully distributed low
complexity detection scheme was proposed to mitigate the
performance degradation and recover the log scaling. In [29],
asymptotic optimality of the multi-chart CUSUMs was shown
under a coupled system, where observations in one sensor can
affect the observations in another. In this paper, however, the
goal is to detect the abnormal processes (and not a change
point), where the process states are fixed during the detection
process.

D. Organization

In Section II we describe the system model and prob-
lem formulation. In Section III we propose the deterministic
DGF policy and establish its asymptotic optimality. We also

provide a comparison of DGF with the randomized Chernoff
test. In Section IV we extend the problem to the case where
multiple anomalous processes are present and consider both
cases of known and unknown number of anomalous processes.
In Section V we provide numerical examples to illustrate the
performance of the proposed policy as compared with the
Chernoff test. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the following anomaly detection problem. A deci-
sion maker is required to detect the location of a single
anomalous object (referred as a target) located in one of
M cells. If the target is in cell m, we say that hypothesis Hm

is true. The a priori probability that Hm is true is denoted
by πm , where

∑M
m=1 πm = 1. To avoid trivial solutions, it is

assumed that 0 < πm < 1 for all m.
At each time, only K (1 ≤ K ≤ M) cells can be observed.

When cell m is observed at time n, an observation ym(n) is
drawn independently from a distribution in a one-at-a-time
manner. If hypothesis m is false, ym(n) follows
distribution f (y); if hypothesis m is true, ym(n) follows
distribution g(y). Let Pm be the probability measure under
hypothesis Hm and Em the operator of expectation with
respect to the measure Pm .

We define the stopping rule τ as the time when the decision
maker finalizes the search by declaring the location of the
target. Let δ ∈ {1, 2, . . . , M} be a decision rule, where δ = m
if the decision maker declares that Hm is true. Let φ(n) ∈
{1, 2, . . . , M}K be a selection rule indicating which K cells
are chosen to be observed at time n. The time series vector
of selection rules is denoted by φ = (φ(n), n = 1, 2, . . .). Let
yφ(n)(n) be the vector of observations obtain from cells φ(n)
at time n and y(n) = {

φ(t), yφ(t)(t)
}n

t=1 be the set of all
cell selections and observations up to time n. A deterministic
selection rule φ(n) at time n is a mapping from y(n − 1)
to {1, 2, . . . , M}K. A randomized selection rule φ(n) is a
mapping from y(n − 1) to probability mass functions over
{1, 2, . . . , M}K.

Definition 1: An admissible strategy � for the sequential
anomaly detection problem is given by the tuple � = (τ, δ,φ).

B. Objective

Let Pe(�) = ∑M
m=1 πmαm(�) be the probability of error

under strategy �, where αm(�) = Pm(δ �= m|�) is the
probability of declaring δ �= m when Hm is true. Let
E(τ |�) = ∑M

m=1 πmEm(τ |�) be the average detection delay
under �.

We adopt a Bayesian approach as in [1] and [4] by assigning
a cost of c for each observation and a loss of 1 for a
wrong declaration. The Bayes risk under strategy � when
hypothesis Hm is true is given by:

Rm(�) � αm(�) + cEm(τ |�). (1)

Note that c represents the ratio of the sampling cost to the
cost of wrong detections.
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The average Bayes risk is given by:

R(�) =
M∑

m=1

πm Rm(�) = Pe(�) + cE(τ |�). (2)

The objective is to find a strategy � that minimizes the
Bayes risk R(�):

inf
�

R(�). (3)

C. Notations

Let 1m(n) be the indicator function, where 1m(n) = 1
if cell m is observed at time n, and 1m(n) = 0 otherwise.
Let

�m(n) � log
g(ym(n))

f (ym(n))
, (4)

and

Sm(n) �
n∑

t=1

�m(t)1m(t) (5)

be the log-likelihood ratio (LLR) and the observed sum LLRs
of cell m at time n, respectively. We then define m(i)(n) as
the index of the cell with the i th highest observed sum LLRs
at time n. Let

	S(n) � Sm(1)(n)(n) − Sm(2)(n)(n) (6)

denote the difference between the highest and the second
highest observed sum LLRs at time n.
Finally, we define

I ∗(M, K )

�

⎧
⎪⎪⎨

⎪⎪⎩

D(g|| f ) + D( f ||g), if K = M,

max

[
K D( f ||g)

M − 1
, D(g|| f ) + (K − 1)D( f ||g)

M − 1

]

,

if K < M.

(7)

In subsequent sections we show that I ∗(M, K ) plays the role
of the rate function, which determines the asymptotically opti-
mal performance of the test. Increasing I ∗(M, K ) decreases
the asymptotic lower bound on the Bayes risk. It is intuitive
that I ∗(M, K ) increases with the observation capability K and
decreases with the hypothesis size M .

III. THE DETERMINISTIC DGF POLICY

In this section we propose a deterministic policy, referred
to as the DGF policy, to solve (3). Theorem 1 shows that the
DGF policy is asymptotically optimal in terms of minimizing
the Bayes risk (2) as c → 0.

A. The DGF Policy

At each time n, the selection rule φ(n) of the DGF policy
chooses cells according to the order of their sum LLRs.
Specifically, based on the relative order of D(g|| f ) and
D( f ||g)/(M − 1), either the K cells with the top K highest
sum LLRs or those with the second to the (K + 1)th highest

sum LLRs are chosen, i.e.,1

φ(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
m(1)(n), m(2)(n), . . . , m(K )(n)

)
,

if D(g|| f ) ≥ D( f ||g)
(M−1) or K = M

(
m(2)(n), m(3)(n), . . . , m(K+1)(n)

)
,

if D(g|| f ) < D( f ||g)
(M−1) and K < M

(8)

The stopping rule and decision rule under the DGF policy are
given by:

τ = inf {n : 	S(n) ≥ − log c}, (9)

and

δ = m(1)(τ ). (10)

The deterministic selection rule of the DGF policy can
be intuitively explained as follows. Consider the case where
K = 1. If cell m(1)(n) is selected at each given time n, the
asymptotic detection time approaches − log c/D(g|| f ) since
the cell with the target (say m) is observed at each given
time with high probability (in the asymptotic regime) and the
test is finalized once sufficient information is gathered from
this cell (for a detailed asymptotic analysis see Appendix A).
In this case, D(g|| f ) determines the asymptotically optimal
performance of the test since Em(�m) = D(g|| f ). On the
other hand, if cell m(2)(n) is selected at each given time n, the
asymptotic detection time approaches −(M−1) log c/D( f ||g)
since one of the M − 1 cells without the target is observed
at each given time with high probability and the test is
finalized once sufficient information is gathered from all
these cells. Since Em(� j ) = −D( f ||g) for all j �= m, the
asymptotically optimal performance of the test is determined
by D( f ||g)/(M − 1). Therefore, the selection rule selects
the strategy that minimizes the asymptotic detection time
according to max [D(g|| f ), D( f ||g)/(M − 1)]. When K > 1,
the rates at which the state of cell m and the states of
the rest M − 1 cells can be accurately inferred are given

by D(g|| f ) + (K−1)D( f ||g)
M−1 and K D( f ||g)

M−1 , respectively. Since
D(g|| f ) > D( f ||g)/(M − 1) is equivalent to D(g|| f ) +
(K−1)D( f ||g)

M−1 > K D( f ||g)
M−1 , the selection rule of DGF is thus

clear.

B. Performance Analysis

The following main theorem shows that the DGF policy is
asymptotically optimal in terms of minimizing the Bayes risk
as c approaches zero:

Theorem 1 (Asymptotic Optimality of the DGF Policy):
Let R∗ and R(�) be the Bayes risks under the DGF policy
and any other policy �, respectively. Then,2

R∗ ∼ −c log c

I ∗(M, K )
∼ inf

�
R(�) as c → 0. (11)

1Cells with the same sum LLRs can be ordered arbitrarily.
2The notation f ∼ g as c → 0 refers to limc→0 f/g = 1.



1436 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 3, MARCH 2015

Proof: For a detailed proof see Appendix A.
We provide here a sketch of the proof. In App. A.1, we show
that −c log c

I ∗(M,K ) is an asymptotic lower bound on the achievable
Bayes risk. Then, we show in App. A.2 that the Bayes risk
R∗ under the DGF policy approaches the asymptotic lower
bound as c → 0. Specifically, the asymptotic behavior of R∗ is
established based on Lemma 11 showing that the asymptotic

expected detection time approaches − log c
I ∗(M,K ) , while the error

probability is O(c) following Lemma 5.
The basic idea in establishing the asymptotic expected

detection time under DGF in Lemma 11 is to upper bound the
stopping time τ of DGF by analyzing three last passage times
(given in Lemmas 7, 8 and 10). Specifically, if the stopping
rule is disregarded and sampling is continued indefinitely, then
three last passage times can be defined: τ1, τ2, τ3, where,
roughly speaking, τ1 is the time when the sum LLRs of
the true cell (say m) is the highest among all the cells for
all n ≥ τ1; τ2 is the time when sufficient information for
distinguishing hypothesis m from at least one false hypothesis
has been gathered; τ3 is the time when sufficient information
for distinguishing hypothesis m from all false hypotheses
has been gathered. It should be noted that τ1, τ2, τ3 are not
stopping times and the decision maker does not know whether
they have arrived (since the true cell is unknown and also
τ1, τ2, τ3 depend on the future by definition). However, by the
definition of τ3 (see Definition 7 in Appendix A for details)
the actual stopping time τ under DGF is upper bounded by
τ3 (i.e., the decision maker does know that for all n < τ , τ3
surely has not arrived). As a result, E(τ3) is an upper bound
of E(τ ).

To show the asymptotic behavior of E(τ3), define
n2 = τ2 − τ1 and n3 = τ3 − τ2. Thus, τ3 = τ1 + n2 + n3.
Lemma 8 shows that E(n2) ∼ − log c/I ∗(M, K ) as c → 0.
Lemma 7 shows that E(τ1)/E(n2) → 0, i.e., τ1 does not affect
the asymptotic detection time. Note that differing from [5],
where only polynomial decay of Pm(τ1 > n) was shown under
the extended Chernoff test developed to handle indistinguish-
able hypotheses under some actions, Lemma 7 shows expo-
nential decay of Pm(τ1 > n) under DGF. Lemma 10 shows
that E(n3)/E(n2) → 0. Combining Lemmas 7, 8 and 10,
we can conclude that E(τ3) ∼ − log c/I ∗(M, K ). Since
the error probability is O(c) following Lemma 5, the
proof thus completes by noticing that the upper bound on
cE(τ ) + Pe coincides with the lower bound on the achievable
Bayes risk.

C. Comparison With the Chernoff Test

Next, we analyze the classic randomized Chernoff test
proposed in [1] when it is applied to the anomaly detection
problem. We then compare the performance of the proposed
DGF policy with the Chernoff test.

1) The Chernoff Test: The Chernoff test has a randomized
selection rule. Specifically, let q = (q1, . . . , qN ) be a prob-
ability mass function over a set of N available experiments
u = {ui }N

i=1 that the decision maker can choose from,
where qi is the probability of choosing experiment ui . For
a general M-ary active hypothesis testing problem, the action

at time n under the Chernoff test is drawn from a distribution
q∗(n) = (q∗

1 (n), . . . , q∗
N (n)) that depends on the past actions

and observations:

q∗(n) = arg max
q

min
j∈M\

{
î(n)

}

∑

ui

qi D(pui

î(n)
||pui

j ), (12)

where M is the set of the M hypotheses, î(n) is the ML
estimate of the true hypothesis at time n based on past actions
and observations, and pui

j is the observation distribution under
hypothesis j when action ui is taken. The stopping rule and
decision rule are given in (9), (10).

It can be shown that when applied to the anomaly detection
problem, the Chernoff test works as follows. When D(g|| f ) ≥
D( f ||g)/(M − 1), the Chernoff test selects cell m(1)(n) and
draws the rest K−1 cells randomly with equal probability from
the remaining M−1 cells. When D(g|| f ) < D( f ||g)/(M−1),
all K cells are drawn randomly with equal probability from
cells {m(2)(n), m(3)(n), . . . , m(M)(n)} under the Chernoff test.

Even though the positivity assumption on KL divergences
as required in the proof of the asymptotic optimality of the
Chernoff test given in [1] no longer holds for the anomaly
detection problem, we show in Theorem 2 below that the
Chernoff test preserves its asymptotic optimality in this case.
Note that in [5], a modified Chernoff test was developed in
order to handle indistinguishable hypotheses under some (but
not all) actions. The basic idea of the modified test is to
replace the action distribution given in (12) with a uniform
distribution for a subsequence of time instants that grows
at a sublinear rate with time. This subsequence of arbitrary
actions are independent of past observations and affects the
finite-time performance. In Theorem 2 below we show that
this modification is unnecessary for the anomaly detection
problem.

Theorem 2: Let RCT and R(�) be the Bayes risks under
the Chernoff test and any other policy �, respectively. Then,

RCT ∼ −c log c

I ∗(M, K )
∼ inf

�
R(�) as c → 0. (13)

Proof: The proof is given in Appendix B and is based
on the argument of [5] and the proof of Theorem 1 given
in Appendix A.

2) Comparison: Although both the Chernoff test and the
DGF policy are asymptotically optimal, simulation results
demonstrate significant performance gain of DGF over the
Chernoff test in the finite regime (see Section V). Next, we
provide an intuition argument for the better finite-time perfor-
mance of DGF by drawing an analogy between the anomaly
detection problem and the makespan scheduling problem.

Consider the problem of scheduling M jobs over
K parallel machines (K ≤ M). Each job requires a deter-
ministic processing time of Tp time units. The objective is to
minimize the makespan which is defined as the completion
time of all M jobs. Note that when K > 1, processing a job
continuously until it is completed can be highly suboptimal
since a certain number of machines are left idle when there are
less than K unfinished jobs. Note also that keeping machines
idle during the scheduling process increases the makespan for
all K ≥ 1. The optimal solution to this problem is given
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by the LRPT (the longest remaining processing time first)
scheduler [33, Th. 5.2.7] that schedules, at any time n, the
K jobs with the longest remaining processing time.

The anomaly detection problem can be viewed as a problem
of scheduling M − 1 jobs (each being the detection process
of distinguishing one of the M − 1 false hypotheses from
the true hypothesis) over K machines (which is the number
of cells that the decision maker can probe simultaneously).
Consider first D(g|| f ) < D( f ||g)/(M − 1). In this case,
DGF probes cells

(
m(2)(n), m(3)(n), . . . , m(K+1)(n)

)
at each

time, while the Chernoff test selects K cells randomly among
the cells

(
m(2)(n), m(3)(n), . . . , mM (n)

)
. Both tests terminate

once 	S(n) ≥ − log c occurs. Assume that hypothesis Hm is
true. Roughly speaking, following Lemma 5, once 	Sm, j �
Sm(n) − Sj (n) > − log c, the decision maker has sufficient
evidence to distinguish false hypothesis H j from the true
hypothesis Hm . Except during an asymptotically insignificant
initial stage of the detection process, cells

(
m(2), . . . , m(M)(n)

)

are the cells without the target (see Lemma 7 for a detailed
analysis on the last passage time τ1 of cell m(1)(n) being
the cell with the target for all n ≥ τ1). In this case, cells(
m(2), . . . , m(K+1)(n)

)
as selected by DGF can be viewed as

the cells with the longest remaining processing times. The
randomized Chenoff test, however, may lead to inefficient
exploitation of the probing capacity, as explain above for the
makespan scheduling problem. Furthermore, randomly select-
ing K cells from

(
m(2), . . . , m(M)(n)

)
may result in probing

a cell whose state can already be inferred with sufficient
accuracy (i.e., 	Sm, j > − log c as detailed in Appendix A),
which can be viewed as scheduling a job that is already
completed or equivalently, leaving a machine idle in the
makespan problem. Such actions, however, will not occur
under DGF. The argument for the case of D(g|| f ) >
D( f ||g)/(M − 1) is similar by viewing the problem as
scheduling M − 1 jobs over K − 1 machines. Note that
both DGF and the Chernoff test dedicate one machine for
probing cell m(1)(n) since under the condition of D(g|| f ) >
D( f ||g)/(M −1), probing the cell with the target is preferred
to accelerate the detection process.

IV. EXTENSION TO MULTIPLE ANOMALOUS PROCESSES

In this section we extend the results reported in previous
sections to the case where multiple processes are abnormal.
In Section IV-A we consider the detection of L abnormal
processes, where L is known. In Section IV-B we consider
the case where an unknown number � ≥ 1 of abnormal
processes are present and only an upper bound � ≤ L
is known.

Throughout this section, we define M′ as the set of all
possible combinations of target locations, with cardinality
M ′ = |M′| (i.e., a set of M ′ hypotheses, Hm′ , indicating that
the locations of all targets are given by the (m′)th set in M′)
and πm′ as the a priori probability that Hm′ is true. Here, the
decision rule declares a set of target locations (i.e., hypothe-
sis Hm′) and the error probability under policy � is defined as
Pe(�) = ∑M ′

m′=1 πm′αm′ (�), where αm′ (�) = Pm′(δ �= Hm′ |�)
is the probability of declaring δ �= Hm′ when Hm′
is true.

A. Known Number of Abnormal Processes

Consider the case where L abnormal processes are located
among the M cells and L is known. In this case, the detection
problem involves M ′ = (M

L

)
hypotheses. We show below that

a variation of the DGF policy, dubbed the DGF(L) policy, is
asymptotically optimal under this setting.

The stopping rule and decision rule under the DGF(L)
policy are similar to that under the DGF policy:

τ = inf {n : 	L S(n) ≥ − log c}, (14)

where 	L S(n) � Sm(L)(n)(n) − Sm(L+1)(n)(n) and

δ = (m(1)(τ ), m(2)(τ ), . . . , m(L)(τ )). (15)

The selection rule under the DGF(L) policy is more involved
and depends on the relative order of K and L (or M − L).
Specifically,

φ(n) =
{

φg(n), if D(g|| f )
L ≥ D( f ||g)

M−L ,

φ f (n), if D(g|| f )
L < D( f ||g)

M−L ,
(16)

where

φg(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m(1)(n), m(2)(n), . . . , m(K )(n)

)
,

if K ≥ L,
(
m(L−K+1)(n), m(L−K+2)(n), . . . , m(L)(n)

)
,

if K < L,

(17)

and

φ f (n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
m(M−K+1)(n), m(M−K+2)(n), . . . , m(M)(n)

)
,

if K > M − L,
(
m(L+1)(n), m(L+2)(n), . . . , m(L+K )(n)

)
,

if K ≤ M − L .

(18)

It is not difficult to see that when L = 1, the DGF(L) policy
degenerates to the DGF policy.

Next, we analyze the performance of the DGF(L) policy.
Let

I ∗(M, K , L)

�
{

I ∗
g (M, K , L), if D(g|| f )

L ≥ D( f ||g)
M−L ,

I ∗
f (M, K , L), if D(g|| f )

L < D( f ||g)
M−L ,

(19)

where

I ∗
g (M, K , L)

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(g|| f ) + (K − L)D( f ||g)

M − L
,

if K ≥ L,
K D(g|| f )

L
,

if K < L,

(20)

and

I ∗
f (M, K , L)

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D( f ||g) + (K − M + L)D(g|| f )

L
,

if K > M-L,
K D( f ||g)

M − L
,

if K ≤ M − L .

(21)
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The following theorem shows the asymptotically optimal
performance of the DGF(L) policy:

Theorem 3: Let R∗ and R(�) be the Bayes risks under the
DGF(L) policy and any other policy �, respectively. Then,

R∗ ∼ −c log c

I ∗(M, K , L)
∼ inf

�
R(�) as c → 0. (22)

Proof: See Appendix C.
Note that in the DGF(L) policy, all L targets are declared

simultaneously at the termination time of the detection.
A modification to DGF(L) leads to a policy where abnor-
mal processes are declared sequentially during the detection.

Consider, for example, K = 1 and D(g|| f )
L ≥ D( f ||g)

M−L . It can
be shown (with minor modifications to Theorem 3) that an
asymptotically optimal policy is to test the cell with the largest
sum LLRs and declare the first target once the largest sum
LLRs exceeds the threshold − log c. The same procedure is
then applied to the remaining M − 1 cells. This repeats until
L abnormal processes have been declared, at which point,
the detection terminates. The asymptotic expected termination
time is given by −L log c/D(g|| f ) with Pe = O(c). Even
though the total detection time remains the same order as
under the DGF(L) policy, this modified version may be more
appealing from a practical point of view. In particular, actions
can be taken to fix each abnormal process the moment it is
identified; the total impact to the system by these L abnormal
processes can thus be reduced. If D(g|| f )

L < D( f ||g)
M−L , it can

be shown that an asymptotically optimal policy is to test
the cell with the smallest sum LLRs and declare the first
normal process once the smallest sum LLRs drops below log c.
The same procedure is then applied to the remaining
M − 1 processes and is repeated until all M − L objects are
declared as normal (thus, the L remaining ones are declared as
abnormal). The asymptotic expected termination time is given
by −(M − L) log c/D( f ||g) with Pe = O(c). Even though
in this case, the modified version also declares all L targets
simultaneously at the termination time of the detection, the
difference is that this modified version incurs much few
switchings among processes than the DGF(L) policy. This
may be more advantageous in some practical scenarios when
switching among tested processes results in additional cost or
delay. To see that the modified version incurs few switchings,
we note that the modified version tests the process that the
decision maker is most sure to be normal based on past
observations while DGF(L) tests the process that the decision
maker is least sure to be normal except the L processes
currently considered as the targets (see the second line in (18)
which shows that DGF(L) chooses the cell with the (L + 1)th

largest sum LLRs; the L processes with larger sum LLRs
are the current maximum likelihood of the target locations).
It should be noted that those modified DGF(L) schemes are
expected to achieve the same performance as DGF(L) in both
the finite and asymptotic regimes when K = 1 following a
similar argument as in Section III-C.

B. Unknown Number of Abnormal Processes

In this section we consider the interesting case where the
number � of abnormal processes (or targets) is unknown. It is

only known that � is bounded by 1 ≤ � ≤ L. We consider the
case where K = 1. We also assume that the number of cells
satisfies:

M ≥ L (D(g|| f ) + D( f ||g))

D(g|| f )
. (23)

Note that (23) implies D(g|| f )
L ≥ D( f ||g)

M−L .
Throughout this section, we allow the decision maker to

declare the target locations sequentially during the test (similar
to the modified DGF(L) policy as discussed at the end of
Section IV-A). We refer to the detection time τd as the time
when the last target has been declared and to the termination
time τ as the time when the decision maker terminates
the test. Note that τ = τd when the number � of targets
is known (as discussed in previous sections). When � is
unknown, however, τd ≤ τ since the decision maker does not
know whether it has already identified all targets at time τd .
In general, the termination time τ increases linearly with
M under any policy with Pe = O(c) whenever � < L.
This is due to the fact that even if the � targets have been
detected with sufficient reliability, the decision maker must
verify whether there are other targets in the remaining M − �
cells before terminating the test. On the other hand, following
the modified DGF(L) policy, one would expect to achieve a
detection time τd less than −L log c/D(g|| f ) for all � ≤ L,
which is independent of the number M of total processes.

In scenarios with a large number of processes and L 
 M ,
a policy that focuses on minimizing the termination time τ ,
which grows linearly with M , may not be practically appeal-
ing. It is desirable to have a policy that allows each abnormal
process to be identified and fixed as quickly as possible during
the test. In other words, it is desirable to have a policy that
minimizes the detection time τd rather than the termination
time τ . In this case, even though the test continues after τd to
ensure there are no other targets, all abnormal processes have
been fixed by the detection time τd and cease to incur cost
to the system. We thus modify the objective function to the
following Bayes risk:

R(�) � Pe(�) + cE(τd |�), (24)

and we are interested in finding a strategy � that minimizes
the Bayes risk (24) This design objective is similar to that
considered in [28], [30], and [31].

Before presenting the desired solution for this case, we
demonstrate with a specific example that even though the
Chernoff test is asymptotically optimal in terms of minimizing
the termination time τ , it is highly suboptimal in terms of
minimizing the detection time τd . Assume that L = 2 is
the upper bound on the number of targets, which can locate
in any of M = 3 cells. As a result, the detection problem
includes 6 hypotheses, H1 = {1} , H2 = {2} , H3 = {3} ,
H4 = {1, 2} , H5 = {1, 3} , H6 = {2, 3}. The observation
model under every hypothesis and cell selection is given
in Table I. Assume that hypothesis H1 is true and that
Ĥ(n) = H1, where Ĥ(n) is the ML estimate of the true
hypothesis at time n. Consider a deterministic policy that
selects the cells according to the order of their sum LLRs
and declares an object as target if Sm(n) > − log c or normal



COHEN AND ZHAO: ACTIVE HYPOTHESIS TESTING FOR ANOMALY DETECTION 1439

TABLE I

OBSERVATION MODEL

if Sm(n) < log c. This policy achieves τd ∼ − log c/D(g|| f )
(since cell 1 is first identified as a target with high prob-
ability) and τ ∼ − log c/D(g|| f ) − 2 log c/D( f ||g) (since
the number of targets is unknown and L = 2, thus the
decision maker must continue testing the normal processes
before terminating the test). On the other hand, the Chernoff
test (which aims to minimize the termination time) will not
select cell 1 at time n, since H4 or H5 minimizes (12),
i.e., D(p1

H1
||p1

H4
) = D(p1

H1
||p1

H5
) = D(g||g) = 0. It can

be verified that selecting randomly cells 2 or 3 with equal
probability 1/(M − 1) = 1/2 maximizes (12) and achieves a
rate function D( f ||g)/(M − 1) = D( f ||g)/2, which results
in τ = τd ∼ −2 log c/D( f ||g), which is greater than the
detection time under the above deterministic policy. Intuitively
speaking, once cells 2, 3 are identified as normal, cell 1 is
identified as abnormal (because at least 1 target is present).
Therefore, the Chernoff test observes cells 2, 3 to minimize
the termination time τ (by not testing cell 1), while increasing
the detection time τd .

Next, we present a deterministic policy to minimize the
Bayes risk (24). Let T (n) be the set of cells satisfying
Sm(n) ≥ − log c at time n. Define

m̃(1)(n) = arg max
m �∈T (n)

Sm(n). (25)

The selection rule is given by:

φ(n) = m̃(1)(n). (26)

The stopping rule and decision rule are given by:

τ = inf {n : |Sm(n)| ≥ − log c ∀m}, (27)

and

δ = T (τd ). (28)

Note that δ denotes the target locations and the complete set is
declared at time τd . Since the number of targets is unknown,
the decision maker continues taking observations to verify that
there is no other target. The test is terminated at time τ .

The following theorem shows the asymptotically optimal
performance of the proposed policy:

Theorem 4: Let � ≤ L be the number of targets, K = 1
and assume that (23) holds. Let R∗ and R(�) be the Bayes
risks (24) under the proposed policy and any other policy �,
respectively. Then,

R∗ ∼ −�c log c

D(g|| f )
∼ inf

�
R(�) as c → 0. (29)

Proof: See Appendix D.

Fig. 1. Performance comparison for M = 5, K = 1, λ f = 0.5, λg = 10.
(a) Average sample sizes and the asymptotic lower bound as a function of
the cost per observation. (b) The loss in terms of Bayes risk under the DGF
policy and the Chernoff test as compared to the asymptotic lower bound.
L DG F , LCh approach 0 as c → 0.

V. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the performance of the proposed deterministic policy as com-
pared to the Chernoff test. We simulated a single anomalous
object (i.e., target) located in one of M cells with the following
parameters: The a priori probability that the target is present
in cell m was set to πm = 1/M for all 1 ≤ m ≤ M .
When cell m is observed at time n, an observation ym(n)
is independently drawn from a distribution f ∼ exp(λ f ) or
g ∼ exp(λg), depending on whether the target is absent or
present, respectively. It can be verified that:

D(g|| f ) = log(λg) − log(λ f ) + λ f

λg
− 1,

D( f ||g) = log(λ f ) − log(λg) + λg

λ f
− 1.

Let RDG F , RCh be the Bayes risks under the DGF policy
and the Chernoff test, respectively. Let RL B = −c log c

I ∗(M,K ) be
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TABLE II

VALUES FOR 95% CONFIDENCE LEVEL

Fig. 2. Performance comparison for M = 5, K = 2, λ f = 2, λg = 10.
(a) Average sample sizes and the asymptotic lower bound as a function of
the cost per observation. (b) The loss in terms of Bayes risk under the DGF
policy and the Chernoff test as compared to the asymptotic lower bound.
L DG F , LCh approach 0 as c → 0.

the asymptotic lower bound on the Bayes risk as c → 0.
We define:

L DG F � RDG F − RL B

RL B
,

LCh � RCh − RL B

RL B
.

as the relative loss in terms of Bayes risk under the DGF
policy and the Chernoff test, respectively, as compared to the
asymptotic lower bound. Following Theorems 2, 1, we expect
both L DG F and LCh to approach 0 as c → 0. L DG F and
LCh serve as performance measures of the tests in the finite
regime.

Fig. 3. Performance comparison for M = 5, K = 2, λ f = 0.5, λg = 10.
(a) Average sample sizes and the asymptotic lower bound as a function of
the cost per observation. (b) The loss in terms of Bayes risk under the DGF
policy and the Chernoff test as compared to the asymptotic lower bound.
L DG F , LCh approach 0 as c → 0.

First, we consider the case where M = 5 and K = 1.
Note that when K = 1 and D(g|| f ) ≥ D( f ||g)/(M − 1),
the Chernoff test coincides with the DGF policy: they both
select cell m(1)(n). When D(g|| f ) < D( f ||g)/(M − 1),
however, the proposed policy selects cell m(2)(n), while the
Chernoff test selects cell j �= m(1)(n) randomly at each
given time n. We set λ f = 0.5, λg = 10 and obtain
D(g|| f ) ≈ 2.05, D( f ||g)/(M − 1) ≈ 4. As a result, the
Chernoff test and the DGF policy have different cell selection
rules. The performance of the Algorithms is presented in
Fig. 1(a), 1(b), were 107 trials were performed. In Fig. 1(a), the
asymptotic lower bound on the expected sample size and the
average sample sizes achieved by the algorithms are presented
as a function of c (log-scale). In Table II we present the sample
standard deviations σ and the standard deviation multipliers r
for a 95% confidence intervals [τ̄ − rσ, τ̄ + rσ ], where τ̄ is
the average detection delay. In Fig. 1(b), L DG F and LCh are
presented as a function of c. Although both schemes approach
the asymptotic lower bound as c → 0, it can be seen that the
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DGF policy significantly outperforms the Chernoff test in the
finite regime for all values of c.

Next, we consider the case where M = 5 and K = 2
(i.e., two cells are observed at a time). In this case, the
DGF policy selects cells m(1)(n) and m(2)(n) at each given
time n only if D(g|| f ) ≥ D( f ||g)/(M − 1). Otherwise, it
selects cells m(2)(n) and m(3)(n). The Chernoff test selects
cells m(1)(n) and j �= m(1)(n) (randomly) at each given
time n only if D(g|| f ) ≥ D( f ||g)/(M − 1). Otherwise, it
selects cells i, j �= m(1)(n) randomly. First, we set λ f = 2,
λg = 10 and obtain D(g|| f ) ≈ 0.8, D( f ||g)/(M − 1) ≈ 0.6.
The performance of the algorithms is presented
in Fig. 2(a), 2(b). Next, we set λ f = 0.5, λg = 10
and obtain D(g|| f ) ≈ 2.05, D( f ||g)/(M − 1) ≈ 4. The
performance of the algorithms in this case is presented
in Fig. 3(a), 3(b). In Fig. 2(a), 3(a), the asymptotic lower
bound on the expected sample size and the average sample
sizes achieved by the algorithms are presented as a function of
the cost per observation c. In Fig. 2(b), 3(b), L DG F and LCh

are presented as a function of c. It can be seen that the
DGF policy significantly outperforms the Chernoff test in the
finite regime for all values of c under all cases. These results
demonstrate the advantage of using the deterministic selection
rule applied by the DGF policy instead of the randomized
Chernoff test for the anomaly detection problem.

VI. CONCLUSION

The problem of detecting a single anomalous process
(i.e., target) among M processes (i.e., cells) was investigated.
Due to resource constraints, only a subset of the cells can
be observed at a time, The objective is a search strategy
that minimizes the expected search time subject to an error
probability constraint. The observations from searching a
cell are realizations drawn from two different distributions
f or g, depending on whether the target is absent or present,
respectively. A simple deterministic policy was established to
solve the Bayesian formulation of the search problem, where a
cost of c per observation and a loss of 1 for wrong decisions
are assigned. It is shown that the proposed index policy is
asymptotically optimal in terms of minimizing the Bayes risk
as c approaches zero.

The problem was further extended to handle the case where
multiple anomalous processes are present. In particular, the
interesting case where only an upper bound on the number
of anomalous processes is known was considered. We showed
that existing methods may not be practically appealing under
the latter setting. Hence, we proposed a modified optimization
problem for this case. Asymptotically optimal deterministic
policies were developed for these cases as well.

APPENDIX

A. Proof of Theorem 1

In this appendix we prove the asymptotic optimality of the
DGF policy as c → 0. In App. A.1, we show that −c log c

I ∗(M,K )
is an asymptotic lower bound on the Bayes risk that can
be achieved by any policy �. Then, we show in App. A.2
that the Bayes risk R∗ under the DGF policy, approaches the

asymptotic lower bound as c → 0. Specifically, the asymptotic
optimality property of DGF is based on Lemma 11, showing
that the asymptotic expected search time approaches − log c

I ∗(M,K ) ,
while the error probability is O(c) following Lemma 5.

Throughout the appendix we use the following notations:
Let

N j (n) �
n∑

t=1

1 j (t) (30)

be the number of times that cell j has been observed up to
time n.

We define

	Sm, j (n) � Sm(n) − Sj (n), (31)

as the difference between the observed sum of LLRs of
cells m and j . Let

	Sm(n) � min
j �=m

	Sm, j (n). (32)

Thus,

	S(n) = Sm(1)(n)(n) − Sm(2)(n)(n) = max
m

	Sm(n). (33)

Without loss of generality we prove the theorem when
hypothesis m is true. For convenience, we define

�̃k(i) =
{

�k(i) − D(g|| f ), if k = m,

�k(i) + D( f ||g), if k �= m.
(34)

Note that �̃k(i) is a zero-mean r.v under hypothesis Hm .
1) The Asymptotic Lower Bound on the Bayes Risk:

The asymptotic lower bound on the Bayes risk is shown in
Theorem 5 below and is mainly based on Lemmas 1, 4,
provided below. Throughout this section, τ denotes a generic
stopping time that can be determined by any policy �.
In Appendix A.2, however, we will refer to τ as the specific
stopping time under the DGF policy. Lemma 1 shows that
under Pm , 	Sm(τ ), defined in (32), must be large enough to
obtain a sufficiently small error αm . Lemma 4 implies that τ
must be large enough to obtain a sufficiently large 	Sm(τ ).

Lemma 1: Assume that α j (�) = O(−c log c) for all
j = 1, . . . , M . Let 0 < ε < 1. Then:

Pm (	Sm(τ ) < − (1 − ε) log c | �) = O(−cε log c), (35)

for all m = 1, . . . , M .
Proof: Note that:

Pm (	Sm(τ ) < − (1 − ε) log c|�)

= Pm (	Sm(τ ) < − (1 − ε) log c, δ = m|�)

+Pm (	Sm(τ ) < − (1 − ε) log c, δ �= m|�)

≤ Pm (	Sm(τ ) < − (1 − ε) log c, δ = m|�) + αm(�)

(36)

Note that αm(�) = O(−c log c) as conditioned
by the Lemma. Next, we upper bound the term
Pm (	Sm(τ ) < − (1 − ε) log c, δ = m|�) by changing
the measure.

Let Rτ be the subset of the sample space, in which
	Sm, j (τ ) < −(1 − ε) log c for some j �= m and Hm is
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accepted at time τ . Let yk(i) be the observation collected from
cell k at time i (note that only K observations are obtained at
a time. An observation is meaningful only when the process
is probed. Otherwise, we can set an arbitrary value). Let
y(τ ) = {y1(i), . . . , yM (i)}τi=1 be the set of all the observations
up to time τ . Let Nk(y(τ )) be the set of time indices for the
observations y(τ ), containing the time indices in which cell k
was probed. Thus, for all j �= m there exists G > 0 such that:

−Gc log c ≥ P j (δ �= j |�) ≥ P j (δ = m|�)

≥ P j
(
	Sm, j (τ ) ≤ −(1 − ε) log c, δ = m|�)

=
∞∑

τ=1

∫

Rτ

⎡

⎣
∏

i∈Nm (y(τ ))

f (ym(i))
∏

i∈N j (y(τ ))

g(y j (i))

×
∏

k �=m, j

∏

i∈Nk (y(τ ))

f (yk(i))

⎤

⎦ dμ(y(τ ))

=
∞∑

τ=1

∫

Rτ

⎡

⎣
∏

i∈Nm (y(τ ))

f (ym(i))

g(ym(i))

∏

i∈N j (y(τ ))

g(y j (i))

f (y j (i))

⎤

⎦

×
⎡

⎣
∏

i∈Nm (y(τ ))

g(ym(i))
∏

i∈N j (y(τ ))

f (y j (i))

×
∏

k �=m, j

∏

i∈Nk (y(τ ))

f (yk(i))

⎤

⎦ dμ(y(τ )) (37)

=
∞∑

τ=1

∫

Rτ

exp
{−	Sm, j (τ )

}

×
⎡

⎣
∏

i∈Nm (y(τ ))

g(ym(i))
∏

i∈N j (y(τ ))

f (y j (i))

×
∏

k �=m, j

∏

i∈Nk (y(τ ))

f (yk(i))

⎤

⎦ dμ(y(τ ))

≥ c1−εPm
(
	Sm, j (τ ) < − (1 − ε) log c, δ = m|�).

Thus,

Pm
(
	Sm, j (τ ) < − (1 − ε) log c, δ = m|�)

= O
(−cε log c

) ∀ j �= m. (38)

As a result, by (32)

Pm (	Sm(τ ) < − (1 − ε) log c, δ = m|�)

≤
∑

j �=m

Pm
(
	Sm, j (τ ) < − (1 − ε) log c, δ = m|�)

= O
(−cε log c

)
. (39)

Finally,

Pm (	Sm(τ ) < − (1 − ε) log c|�) = O
(−cε log c

)
. (40)

Lemma 2: Assume that K < M and

I ∗(M, K ) = D(g|| f ) + (K − 1)D( f ||g)

M − 1
.

Define the following function:

d(t) � t

[

D(g|| f ) + K n
t − 1

M − 1
D( f ||g)

]

. (41)

Then, d(t) is monotonically increasing with t .
Proof: Note that I ∗(M, K ) = D(g|| f ) + (K−1)D( f ||g)

M−1
implies:

D(g|| f ) + (K − 1)D( f ||g)

M − 1
≥ K D( f ||g)

M − 1

⇐⇒ D(g|| f ) ≥ D( f ||g)

M − 1
.

Differentiation d(t) with respect to t yields:

∂d(t)

∂ t
= D(g|| f ) − D( f ||g)

M − 1
≥ 0,

which completes the proof.
For the next lemma we define

j∗(t) � arg min
j �=m

N j (t) (42)

as the cell (except cell m) which has been observed the lowest
number of times up to time t and

W∗
m(t) �

t∑

i=1

�̃m(i)1m(i) −
t∑

i=1

�̃ j∗(t)(i)1 j∗(t)(i). (43)

Note that W∗
m(t) is a sum of zero-mean r.v. The follow-

ing lemma shows that W∗
m(t) is sufficiently small. This

result will be used in the proof of Lemma 4 to show
that Pm

(
max1≤t≤n 	Sm(t) ≥ n (I ∗(M, K ) + ε) | �

) → 0 as
n → ∞.

Lemma 3: For every fixed ε > 0 there exist C > 0 and
γ > 0 such that

Pm

(

max
1≤t≤n

W∗
m(t) ≥ nε|�

)

≤ Ce−γ n (44)

for all m = 1, . . . , M and for any policy �.
Proof: Since that Nm (t), N j∗(t)(t) are r.v, we can

upper bound (44) by summing over any possible values that
Nm (t), N j∗(t)(t) can take:

Pm

(

max
1≤t≤n

W∗
m(t) ≥ nε|�

)

≤
n∑

t=1

Pm

(
t∑

r=1

�̃m(r)1m(r) − �̃ j∗(t)(i)1 j∗(t)(r) ≥ nε|�
)

=
n∑

t=1

t∑

i=0

t∑

j=0

Pm

(
t∑

r=1

�̃m(r)1m(r)+
t∑

r=1

−�̃ j∗(t)(r)1 j∗(t)(r)

≥ nε, Nm (t) = i, N j∗(t) = j |�
)

≤
n∑

t=1

t∑

i=0

t∑

j=0

[
Em

(
es(�̃m(1)−ε/2)

)]i

×
[
Em

(
es(−�̃ j∗(t)(1)−ε/2)

)] j × exp
{
−s

ε

2
(2n − i − j)

}
,

(45)

for all s > 0.
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The last inequality follows due to the i.i.d. property of �k(t)
across the time series and applying the Chernoff bound for
each term in the summation on the RHS of the equality. Note
that we used the fact that the measure of the sample space that
satisfies

{∑t
r=1 �̃m(r)1m(r)+∑t

r=1 −�̃ j∗(t)(r)1 j∗(t)(r) ≥ nε,

Nm (t) = i, N j∗(t) = j
}

under policy � is smaller
than the measure of the sample space that satisfies{∑i

r=1 �̃m(r) +∑ j
r=1 −�̃ j∗(t)(r) ≥ nε

}
(which is bounded by

the Chernoff bound). This fact follows since that any selection
of i, j observations from cells m, j∗(t) (which have i.i.d distri-
butions), yields the same distribution independent of the time
they were taken. In particular, the intersection of the sample
space

{∑t
r=1 �̃m(r)1m(r) +∑t

r=1 −�̃ j∗(t)(r)1 j∗(t)(r) ≥ nε,
}

and
{

Nm (t) = i, N j∗(t) = j
}

under policy � further decreases
the measure.

Clearly, a moment generating function (MGF) is equal
to one at s = 0. Furthermore, since Em(�̃m(1) − ε/2) =
−ε/2 < 0 and Em(−�̃ j∗(t)(1) − ε/2) = −ε/2 < 0 are
strictly negative, differentiating the MGFs of �̃m(1) − ε/2
and −�̃ j∗(t)(1) − ε/2 with respect to s yields strictly neg-
ative derivatives at s = 0. Hence, there exist s > 0 and
γ ′ > 0 such that Em

(
es(�̃m(1)−ε/2)

)
, Em

(
es(−�̃ j∗(t)(1)−ε/2)

)

and e−sε/2 are strictly less than e−γ ′
< 1. Since 2n−i − j ≥ 0,

there exist C > 0 and γ > 0, such that summing over
t, i, j yields (44).

Lemma 4: For any fixed ε > 0,

Pm

(

max
1≤t≤n

	Sm(t) ≥ n
(
I ∗(M, K ) + ε

) | �

)

→ 0

as n → ∞, (46)

for all m = 1, . . . , M and for any policy �.
Proof: It should be noted that a polynomial decay

of a similar condition under a binary composite hypothesis
testing was shown in [1, Lemma 5] using a variation of the
Kolmogorov’s inequality. Here, we use a different approach to
show exponential decay of (46). Let

	S∗
m(t) � Sm(t) − Sj∗(t)(t).

Since 	Sm(t) ≤ 	S∗
m(t) for all m and t , we have:

Pm

(

max
1≤t≤n

	Sm(t) ≥ n
(
I ∗(M, K ) + ε

) |�
)

≤ Pm

(

max
1≤t≤n

	S∗
m(t) ≥ n

(
I ∗(M, K ) + ε

) |�
)

(47)

Next, we consider three cases:
Case 1 (K = M): In this case I ∗(M, K ) = D(g|| f ) +

D( f ||g). Furthermore, note that N j (t) = t , for all j and t .
Thus,

	S∗
m(t) = W∗

m(t) + t (D(g|| f ) + D( f ||g))

≤ W∗
m(t) + nI ∗(M, K ). (48)

Therefore,

	S∗
m(t) ≥ n(I ∗(M, K ) + ε)

implies

W∗
m(t) ≥ nε.

Applying Lemma 3 yields:

Pm

(

max
1≤t≤n

	Sm(t) ≥ n
(
I ∗(M, K ) + ε

) |�
)

≤ Pm

(

max
1≤t≤n

W∗
m(t) ≥ nε|�

)

≤ Ce−γ n → 0 as n → ∞. (49)

Case 2 (K < M and I ∗(M, K ) = K D( f ||g)
M−1 ): Note that:

	S∗
m(t) = W∗

m(t) + Nm (t)D(g|| f ) + N j∗(t)(t)D( f ||g)

≤ W∗
m(t) + D( f ||g)

[
Nm (t)

M − 1
+ N j∗(t)(t)

]

(50)

The last inequality holds since K D( f ||g)
M−1 ≥ D(g|| f ) +

(K−1)D( f ||g)
M−1 implies D(g|| f ) ≤ D( f ||g)

M−1 .
Since that j∗(t) = arg min j �=m N j (t) and K t − Nm (t) is the

total number of observations taken from M − 1 cells j �= m,
we have:

N j∗(t)(t) ≤ K t − Nm (t)

M − 1
≤ K n − Nm (t)

M − 1
. (51)

Hence,

	S∗
m(t) ≤ W∗

m(t) + D( f ||g)
K n

M − 1
= W∗

m(t) + nI ∗(M, K ). (52)

Therefore,

	S∗
m(t) ≥ n

(
I ∗(M, K ) + ε

)

implies

W∗
m(t) ≥ nε.

The rest of the proof is similar to Case 1.
Case 3 (K < M and I ∗(M, K ) = D(g|| f )+ (K−1)D( f ||g)

M−1 ):
Note that:

	S∗
m(t) = W∗

m(t) + Nm (t)D(g|| f ) + N j∗(t)(t)D( f ||g)

≤ W∗
m(t) + Nm (t)D(g|| f ) + K n − Nm (t)

M − 1
D( f ||g)

= W∗
m(t)+Nm(t)

[

D(g|| f )+ K n
Nm (t) − 1

M − 1
D( f ||g)

]

(53)

Since 0 ≤ Nm (t) ≤ n, by Lemma 2 we have:

	S∗
m(t) ≤ W∗

m(t) + n

[

D(g|| f ) + K − 1

M − 1
D( f ||g)

]

= W∗
m(t) + nI ∗(M, K ). (54)

The rest of the proof is similar to Case 1. Hence, (46)
follows.
The following theorem shows that in order to achieve a
Bayes risk lower than −c log(c)

I ∗(M,K ) under any hypothesis, the risk
must be of a greater order than O(−c log c) under some
hypothesis. As a result, it provides a lower bound ∼ −c log(c)

I ∗(M,K )
on the average Bayes risk (2):
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Theorem 5: Any policy � that satisfies R j (�) =
O(−c log c) for all j = 1, . . . , M must satisfy:

Rm(�) ≥ − (1 + o(1))
c log(c)

I ∗(M, K )
. (55)

for all m = 1, . . . , M .
Proof: To show the lower bound on the Bayes risk,

we use a similar argument as in [1]. For any ε > 0 let

nc = −(1 − ε)
log c

I ∗(M, K ) + ε
. Note that

Pm (τ ≤ nc | �)

= Pm (τ ≤ nc, 	Sm(τ ) ≥ − (1 − ε) log c | �)

+ Pm (τ ≤ nc, 	Sm(τ ) < − (1 − ε) log c | �)

≤ Pm

(

max
t≤nc

	Sm(t) ≥ − (1 − ε) log c | �

)

+ Pm (	Sm(τ ) < − (1 − ε) log c | �). (56)

The first term in the last inequality approaches zero as c → 0
by Lemma 4. Next, note that Lemma 1 requires α j (�) =
O(−c log c) for all j = 1, . . . , M . Since the theorem requires
R j (�) = O(−c log c) for all j = 1, . . . , M (and recall that
α j (�) ≤ R j (�)), we can apply Lemma 1. Thus, the second
term in the last inequality approaches zero as c → 0. As a
result, the expected sample size under policy � satisfies:

Em(τ |�) ≥
∞∑

n=nc+1

nPm (τ = n|�)

≥ ncPm (τ ≥ nc + 1|�) → nc as c → 0 (57)

Since ε > 0 can be arbitrarily small we have Em(τ |�) ≥
− (1 + o(1)) log(c)/I ∗(M, K ). Hence, Rm(�) ≥ cEm(τ |�) ≥
− (1 + o(1)) c log(c)/I ∗(M, K ).

2) Asymptotic Optimality of the DGF Policy: In this section
we show that the DGF policy achieves the lower bound on
the Bayes risk (55) as c → 0. We mainly focus on the more
interesting case where K ≥ 2 cells are observed at a time.
The case where K = 1 is simpler and follows with minor
modifications. Below, the proof follows the structure discussed
in Section III-B.

Lemma 5: Assume that the DGF policy is implemented.
Then, the error probability is upper bounded by:

Pe ≤ (M − 1)c. (58)

Proof: Let αm, j = Pm(δ = j) for all j �= m. Thus,
αm = ∑

j �=m αm, j . Note that accepting H j (i.e., 	Sj (n) ≥
− log c) implies 	Sj,m ≥ − log c. By changing the measure,
as in [1, Lemma 3], we can show that for all j �= m the
following holds:

αm, j = Pm (δ = j)

= Pm
(
	Sj (τ ) ≥ − log c

) ≤ Pm
(
	Sj,m(τ ) ≥ − log c

)

≤ cP j
(
	Sj,m(τ ) ≥ − log c

) ≤ c. (59)

Finally,

αm =
∑

j �=m

αm, j ≤ (M − 1)c.

Hence, (58) follows.

Lemma 6: Fix 0 < q < 1. Then, there exist C > 0 and
γ > 0 such that

Pm
(
Sj (n) ≥ Sm(n), N j (n) ≥ qn

) ≤ Ce−γ n, (60)

and

Pm
(
Sj (n) ≥ Sm(n), Nm (n) ≥ qn

) ≤ Ce−γ n, (61)

hold under any policy for m = 1, 2, . . . , M and j �= m.
Proof [We prove (60)]: Proving (61) applies with minor

modifications. Note that we can develop (60) by summing
over any possible values that N j (n), Nm (n) can take
(i.e., N j (n) = �qn�, �qn� + 1, . . . n, and Nm(n) = 0, . . . , n).
Similar to (45), applying the Chernoff bound and
using the i.i.d. property of � j (t), �m(t) across time
yield:

Pm
(
Sj (n) ≥ Sm(n), N j (n) ≥ qn

)

≤
n∑

r=�qn�

n∑

k=0

Pm

(
r∑

i=1

� j (i) +
k∑

i=1

−�m(i) ≥ 0

)

≤
n∑

r=�qn�

n∑

k=0

[
Em

(
es� j (1)

)]r [
Em

(
es(−�m(1))

)]k
(62)

for all s > 0.
Note that a moment generating function (MGF) is equal to

one at s = 0. Furthermore, since Em(� j (1)) = −D( f ||g) < 0
and Em(−�m(1)) = −D(g|| f ) < 0 are strictly negative,
differentiating the MGFs of � j (1), �m(1) with respect to s
yields strictly negative derivatives at s = 0. As a result,
there exist s > 0 and γ1 > 0 such that Em

(
es� j (1)

)
, and

Em
(
es(−�m(1))

)
are strictly less than e−γ1 < 1. Hence, there

exist C > 0 and γ = γ1 · q > 0 such that

Pm
(
Sj (n) − Sm(n) ≥ 0, N j (n) ≥ qn

)

≤
n∑

r=�qn�
e−γ1r

n∑

k=0

e−γ1k ≤ Ce−γ n. (63)

For the following definition, recall that Sm(n) is a random walk
with positive expected increment Em(�m(n)) = D(g|| f ) > 0,
while Sj (n), for j �= m is a random walk with negative
expected increment Em(� j (n)) = −D( f ||g) < 0. As a result,
ultimately, the sample path of Sm(n) will dominate those of
Sj (n), ∀ j �= m, when n (and also the number of samples taken
from cells m or j ) is sufficiently large. Below, we define a ran-
dom time τ1, which is the last passage time where the sample
path of Sm(n) will dominate those of Sj (n) for all n ≥ τ1,
i.e., τ1 is the last passage time in which Sm(n) crosses Sj (n).
It should be noted that τ1 is not a stopping time (note that τ1
depends on the future by definition) and the decision maker
does not know whether τ1 has arrived. In Lemma 7 below we
show that τ1 is sufficiently small with high probability. We will
use this result later to upper bound the actual stopping time τ
under DGF.

Definition 2: τ1 is the smallest integer such that
Sm(n) > Sj (n) for all j �= m for all n ≥ τ1.
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Remark 1: In the following lemmas, when we say that the
DGF policy is implemented indefinitely we mean that DGF
probes the cells indefinitely according to its selection rule,
while the stopping rule is disregarded.

Lemma 7: Assume that the DGF policy is implemented
indefinitely. Then, there exist C > 0 and γ > 0
such that

Pm (τ1 > n) ≤ Ce−γ n, (64)

for m = 1, 2, . . . , M .
Proof: We focus on the case where M > 2. The case of

M = 2 is simpler and follows with minor modifications. Note
that:

Pm (τ1 > n) ≤ Pm

(

max
j �=m

sup
t≥n

(
Sj (t) − Sm(t)

) ≥ 0

)

≤
∑

j �=m

∞∑

t=n

Pm
(
Sj (t) ≥ Sm(t)

)
. (65)

Therefore, it suffices to show that there exist C > 0 and γ > 0
such that Pm

(
Sj (n) ≥ Sm(n)

) ≤ Ce−γ n .
Step 1: Bounding each term in the summation on the

RHS of (65):
Let

ρ = 1

16(M − 2)
.

Note that 0 < ρ ≤ 1/16.
Thus,

Pm
(
Sj (n) ≥ Sm(n)

)

≤ Pm
(
Sj (n) ≥ Sm(n), N j (n) < ρn, Nm (n) < ρn

)

+ Pm
(
Sj (n) ≥ Sm(n), N j (n) ≥ ρn

)

+ Pm
(
Sj (n) ≥ Sm(n), Nm (n) ≥ ρn

)
(66)

By Lemma 6, there exist γ1 > 0 and D > 0 such that the
second and the third terms on the RHS are upper bounded
by De−γ1n . In the case of K = M the first term on the
RHS equals zero (since N j (n) = Nm (n) = n surely).
Hence, it remains to show that the first term on the RHS
decreases exponentially with n for K < M . Note that the
event (N j (n) < ρn, Nm (n) < ρn) implies that at least
ñ = n − N j (n) − Nm (n) ≥ n (1 − 2ρ) times cells j, m
are not observed. Let Ñr (n) be the number of times when
cell r �= j, m has been observed and cells j, m have not
been observed up to time n. We refer to each such time
as r �= j,m-probing time. There exists a cell r �= j, m such
that Ñr (n) ≥ ñ

M−2 = n(1−2ρ)
M−2 . Hence, (66) can be upper

bounded by:

Pm
(
Sj (n) ≥ Sm(n)

)

≤
∑

r �= j,m

Pm

(

Ñr (n) >
n(1 − 2ρ)

M − 2
,

N j (n) < ρn, Nm (n) < ρn

)

+ 2De−γ1n (67)

It remains to show that each term in the summation on the
RHS of (67) decreases exponentially with n.

Step 2: Bounding each term in the summation on the
RHS of (67):

Let t̃ r
1 , t̃ r

2 , . . . , t̃ r
Ñr (n)

be the r �= j,m-probing time indices
and let

ζ � 1 − 2ρ

2(M − 2)
.

Note that:
• At every r �= j,m-probing time, Sj (n) ≤ Sr (n) or Sm(n) ≤

Sr (n) must occur (otherwise, if Sj (n) > Sr (n) and
Sm(n) > Sr (n) then j or m are observed).

• In particular, the event Ñr (n) > n(1−2ρ)
M−2 implies that

at time t̃ r
ζn the following holds: Sj (t̃ r

ζn) ≤ Sr (t̃ r
ζn) or

Sm(t̃ r
ζn) ≤ Sr (t̃ r

ζn) must occur.
• Since Nr (t) is the total number of observations taken

from cell r up to time t (during both r �= j,m-probing
times and all other times when cell r was probed),
then Nr

(
t̃ r
ζn

)
≥ ζn.

Therefore, using the i.i.d. property of the LLRs across time
we have3:

Pm

(

Ñr (n) >
n(1 − 2ρ)

M − 2
, N j (n) < ρn, Nm (n) < ρn

)

≤
n∑

N ′
r =ζn

Pm

⎛

⎝ inf
n′≤ρn

n′
∑

i=1

� j (i) ≤
N ′

r∑

i=1

�r (i)

⎞

⎠

+
n∑

N ′
r =ζn

Pm

⎛

⎝ inf
n′≤ρn

n′
∑

i=1

�m(i) ≤
N ′

r∑

i=1

�r (i)

⎞

⎠

≤
n∑

N ′
r =ζn

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

� j (i) ≤
N ′

r∑

i=1

�r (i)

⎞

⎠

+
n∑

N ′
r =ζn

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

�m(i) ≤
N ′

r∑

i=1

�r (i)

⎞

⎠

=
n−ζn∑

q=0

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

+
n−ζn∑

q=0

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

�m(i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠ . (68)

Step 3: Bounding the first term on the RHS of (68):
Note that

ζn+q∑

i=1

�r (i) +
n′
∑

i=1

−� j (i)

=
ζn+q∑

i=1

�̃r (i) +
n′
∑

i=1

−�̃ j (i) − D( f ||g)
(
ζn + q − n′) .

(69)

3For the ease of presentation, throughout the proof we assume that
ζn, ρn are integers. This assumption does not affect the exponential decay
of the Chernoff bound but only the exact value of C > 0 in (64) (since
αn − 1 ≤ �αn� ≤ �αn� ≤ αn + 1 holds for all α ≥ 0 for all n = 0, 1, . . .).
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and

ζn + q − n′ ≥ ζn + q − n′ − 2
(
ρn − n′)

= n (ζ − 2ρ) + q + n′ ≥ 1

4(M − 2)
n + q + n′

≥ 1

4(M − 2)
(n + q + n′),

for all n′ ≤ ρn.
Therefore,

ζn+q∑

i=1

�r (i) +
n′
∑

i=1

−� j (i) ≥ 0 (70)

implies

ζn+q∑

i=1

�̃r (i) +
n′
∑

i=1

−�̃ j (i) ≥ C1
(
n + q + n′) . (71)

where C1 = D( f ||g)
4(M−2) > 0.

Applying the Chernoff bound and using the i.i.d. property
of �r (t), � j (t) across the time series yield:

Pm

⎛

⎝
n′
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

≤ Pm

⎛

⎝
ζn+q∑

i=1

�̃r (i) +
n′
∑

i=1

−�̃ j (i) ≥ C1
(
n + q + n′)

⎞

⎠

≤
[
Em

(
es �̃r (1)

)]ζn+q [
Em

(
es(−�̃ j (1))

)]n′

×e−sC1(n+q+n′)

=
[

Em

(

e
s
(
�̃r (1)−C1

))]ζn+q

×
[

Em

(

e
s
(
−�̃ j (1)−C1

))]n′

× e−sC1(n−ζn). (72)

for all s > 0.
Since Em(�̃r (1)−C1) = −C1 < 0 and Em(−�̃ j (1)−C1) =

−C1 < 0 are strictly negative, by applying a similar argument
as at the end of the proof of Lemma 6, there exist s > 0 and
γ2 > 0 such that Em

(
e(s �̃r (1)−C1)

)
, Em

(
es(−�̃ j (1)−C1)

)
and

e−sC1 are strictly less than e−γ2 < 1. Hence,

Pm

⎛

⎝
n′
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠ ≤ e−γ2(n+q+n′). (73)

and

n−ζn∑

q=0

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

≤ e−γ2n
n−ζn∑

q=0

e−γ2q
ρn∑

n′=0

e−γ2n′ ≤ C2e−γ2n, (74)

where C2 = (
1 − e−γ2

)−2.

Step 4: Bounding the second term on the RHS of (68):
Applying the Chernoff bound and using the i.i.d. property

of �r (t), �m(t) across the time series yield:

Pm

⎛

⎝
ζn+q∑

i=1

�r (i) +
n′
∑

i=1

−�m(i) ≥ 0

⎞

⎠

≤
[
Em

(
es�r (1)

)]ζn+q [
Em

(
es(−�m(1))

)]n′
. (75)

for all s > 0.
Since Em(�r (1)) = −D( f ||g) < 0 and Em(−�m(1)) =

−D(g|| f ) < 0 are strictly negative, there exist s > 0 and
γ ′

3 > 0 such that Em
(
es�r (1)

)
, Em

(
es(−�m(1))

)
are strictly less

than e−γ ′
3 < 1. Hence,

Pm

⎛

⎝
ζn+q∑

i=1

�r (i) +
n′
∑

i=1

−�m(i) ≥ 0

⎞

⎠ ≤ e−γ ′
3(ζn+q+n′). (76)

Finally, there exists γ3 = ζγ ′
3 > 0 such that

n−ζn∑

q=0

ρn∑

n′=0

Pm

⎛

⎝
n′
∑

i=1

�m(i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

≤ e−γ3n
n−ζn∑

q=0

e−γ3q/ζ
ρn∑

n′=0

e−γ3n′/ζ ≤ e−γ3n

(
1 − e−γ3/ζ

)2 ,

(77)

which completes the proof.
It should be noted that differing from [5], where only a
polynomial decay of Pm(τ1 > n) was shown to handle indis-
tinguishable hypotheses under some (but not all) actions when
applying the extended randomized Chernoff test, Lemma 7
shows exponential decay of Pm(τ1 > n) under DGF.

For the next lemmas we define

D′( f ||g) � (K − 1)D( f ||g)/(M − 1). (78)

In what follows we define the second random time τ2 ≥ τ1.
τ2 can be viewed as the time where sufficient information
has been gathered to distinguish hypothesis m from at least
one false hypothesis j �= m. We point out that τ2 is not a
stopping time. However, it serves us later in upper bounding
the stopping time τ under DGF. Lemma 8 shows that in
the asymptotic regime the total time between τ1 and τ2
approaches ∼ − log c/I ∗(M, K ).

Definition 3: τ2 is defined as follows:
1) If K = M , τ2 denotes the smallest integer

such that
∑n

i=τ1+1 �m(i)1m(i) ≥ − D(g|| f )
I ∗(M,K ) log c and

∑n
i=τ1+1 � jn (i)1 jn(i) ≤ D( f ||g)

I ∗(M,K ) log c for some jn �= m
for all n ≥ τ2 ≥ τ1.

2) If K < M and I ∗(M, K ) = K D( f ||g)/(M − 1),
τ2 denotes the smallest integer such that
∑n

i=τ1+1 � jn (i)1 jn(i) ≤ log c for some jn �= m
for all n ≥ τ2 ≥ τ1.

3) If K < M and I ∗(M, K ) = D(g|| f ) + (K − 1)
D( f ||g)/(M − 1), τ2 denotes the smallest integer
such that

∑n
i=τ1+1 �m(i)1m(i) ≥ − D(g|| f )

I ∗(M,K ) log c and
∑n

i=τ1+1 � jn (i)1 jn(i) ≤ D′( f ||g)
I ∗(M,K ) log c for some jn �= m

for all n ≥ τ2 ≥ τ1.
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Definition 4: n2 � τ2 −τ1 denotes the total amount of time
between τ1 and τ2.

Lemma 8: Assume that the DGF policy is implemented
indefinitely. Then, for every fixed ε > 0 there exist C > 0
and γ > 0 such that

Pm (n2 > n) ≤ Ce−γ n ∀n > −(1 + ε) log c/I ∗(M, K ),

(79)

for all m = 1, 2, . . . , M .
Proof: We prove the lemma for three cases:

Case 1 (K = M): In this case I ∗(M, K ) = D(g|| f ) +
D( f ||g) and 1k(t) = 1 for all k, t . Let τm

2 and τ
j

2 for
j �= m be the smallest integers such that

∑n
i=τ1+1 �m(i) ≥

− D(g|| f )
I ∗(M,K ) log c for all n > τm

2 and
∑n

i=τ1+1 � j (i) ≤
D( f ||g)

I ∗(M,K ) log c for all n > τ
j

2 for j �= m, respectively. Similarly,
nk

2 denotes the total amount of time between τ1 and τ k
2 . Clearly,

n2 ≤ maxk(nk
2). As a result,

Pm (n2 > n) ≤
M∑

k=1

Pm
(
nk

2 > n
)
. (80)

Thus it remains to show that Pm
(
nk

2 > n
)

decreases expo-
nentially with n. Next, we prove the lemma for cell m. The
proof for cell j �= m follows with minor modifications. Let
ε1 = D(g|| f )ε/(1 + ε) > 0. Thus,

t+τ1∑

i=τ1+1

�m(i) + D(g|| f )

I ∗(M, K )
log c

=
t+τ1∑

i=τ1+1

�̃m(i) + t D(g|| f ) + D(g|| f )

I ∗(M, K )
log c

≥
t+τ1∑

i=τ1+1

�̃m(i) + tε1, (81)

for all t ≥ n > −(1 + ε) log c/I ∗(M, K ).
As a result,

t+τ1∑

i=τ1+1

�m(i) ≤ − D(g|| f )

I ∗(M, K )
log c. (82)

implies

t+τ1∑

i=τ1+1

�̃m(i) ≤ −tε1. (83)

Hence, for any ε > 0 there exists ε1 > 0 such that

Pm
(
nm

2 > n
)

≤ Pm

⎛

⎝inf
t≥n

t+τ1∑

i=τ1+1

�m(i) ≤ − D(g|| f )

I ∗(M, K )
log c

⎞

⎠

≤
∞∑

t=n

Pm

⎛

⎝
t+τ1∑

i=τ1+1

�m(i) ≤ − D(g|| f )

I ∗(M, K )
log c

⎞

⎠

≤
∞∑

t=n

Pm

⎛

⎝
t+τ1∑

i=τ1+1

−�̃m(i) ≥ tε1

⎞

⎠, (84)

for all t ≥ n > −(1 + ε) log c/I ∗(M, K ).

By applying the Chernoff bound, it can be shown that there
exists γ1 > 0 such that: Pm

(∑t+τ1
i=τ1+1 −�̃m(i) ≥ tε1

)
≤ e−γ1t

for all t ≥ n > −(1 + ε) log c/I ∗(M, K ). Hence, there exist
C1 > 0 and γ1 > 0 such that Pm

(
nm

2 > n
) ≤ C1e−γ1n for all

n > −(1 + ε) log c/I ∗(M, K ).
Case 2 (K < M and I ∗(M, K ) = K D( f ||g)

M−1 ): In this
case, the cell with the highest index is not observed for all n.
As a result, cell m is not observed for all n ≥ τ1 since
Sm(n) > Sj (n) for all j �= m for all n ≥ τ1. Let N ′

j (τ1 + t) �
∑τ1+t

i=τ1+1 1 j (i). Let j∗(τ1 + t) = arg max j �=m N ′
j (τ1 + t)

be the cell index that was observed the largest number of
times since τ1 has occurred up to time τ1 + t . Note that if∑τ1+t

i=τ1+1 � j∗(τ1+t)(i)1 j∗(τ1+t)(i) ≤ log c for all t ≥ n, then
n2 ≤ n. Hence,

Pm (n2 > n)

≤ Pm

⎛

⎝sup
t≥n

τ1+t∑

i=τ1+1

� j∗(τ1+t)(i)1 j∗(τ1+t)(i) ≥ log c

⎞

⎠.

(85)

Note that N ′
j∗(τ1+t)(τ1 + t) ≥ K t

M−1 (since K t observations are
taken from M − 1 cells). Thus, for any ε > 0 there exists
ε1 > 0 such that:

τ1+t∑

i=τ1+1

� j∗(τ1+t)(i)1 j∗(τ1+t)(i) − log c

=
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i)

−N ′
j∗(τ1+t)(τ1 + t)D( f ||g) − log c

≤
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i)

− t D( f ||g)K

M − 1

(

1 − −(M − 1) log c

t K D( f ||g)

)

≤
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i) − tε1, (86)

for all t ≥ n > −(1 + ε) log c/I ∗(M, K ) = −(1+ε)(M −1)
log c/(K D( f ||g).

The rest of the proof follows by by applying the Chernoff
bound.

Case 3 (K < M and I ∗(M, K ) = D(g|| f )+ (K−1)D( f ||g)
M−1 ):

In this case, the cell with the highest index is observed for
all n. As a result, cell m is observed for all n ≥ τ1 since
Sm(n) > Sj (n) for all j �= m for all n ≥ τ1. Therefore, a
similar argument as in Case 1 applies to cell m. Next, we
focus on cell j∗(τ1 + t) �= m as in Case 2. Note that in this
case N j∗(τ1+t)(τ1 + t) ≥ (K−1)t

M−1 (since t observations are taken
from cell m and (K − 1)t observations are taken from M − 1
cells (for j �= m)). Thus, (86) can be developed for this case
as well with minor modifications.

In what follows we define the dynamic range of the false
hypotheses in terms of their sum LLRs. Note that the dynamic
range at time τ2 (which is the time where sufficient information
has been gathered to distinguish Hm from at least one false



1448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 3, MARCH 2015

hypothesis) can be viewed as the total amount of information
remains to gather in order to distinguish Hm from all the
false hypotheses. Lemma 9 shows that the dynamic range at
time τ2 is sufficiently small.

Definition 5: The dynamic range of the false hypotheses at
time t is defined as follows:

DR(t) � max
j �=m

Sj (t) − min
j �=m

Sj (t). (87)

Lemma 9: Assume that the DGF policy is implemented
indefinitely. Then, for every fixed ε1 > 0, ε2 > 0 there exist
C > 0 and γ > 0 such that

Pm (DR(τ2) > ε1n) ≤ Ce−γ n

∀n > −(1 + ε2) log c/I ∗(M, K ), (88)

for all m = 1, 2, . . . , M .
Proof: Note that

Pm (DR(τ2) > ε1n)

≤ Pm (τ2 > n) + Pm (DR(τ2) > ε1n, τ2 ≤ n) (89)

Since τ2 = τ1 + n2, applying Lemmas 7, 8 implies that
the first term on the RHS of (89) decreases exponentially
with n for all n > −(1 + ε2) log c/I ∗(M, K ) for every
fixed ε2 > 0. It remains to show that the second term
on the RHS of (89) decreases exponentially with n. Let
j̄ = arg max j �=m Sj (τ2), j = arg min j �=m Sj (τ2). Let t0 be
the smallest integer such that Sj (t) ≤ S j̄ (t) for all t0 < t ≤ τ2.
As a result, DR(τ2) > ε1n implies

τ2∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t) > ε1n.

Note that the second term on the RHS of (89) can be
rewritten as:

Pm (DR(τ2) > ε1n, τ2 ≤ n)
= Pm (DR(τ2) > ε1n, τ2 ≤ n, t0 ≥ τ1)

+Pm (DR(τ2) > ε1n, τ2 ≤ n, t0 < τ1) (90)

Let N = ∑τ2
t=t0 1 j (t), N = ∑τ2

t=t0 1 j̄ (t).
First, we upper bound the first term on the RHS of (90).

Note that for all τ1 ≤ t0 < t ≤ τ2, if 1 j (t) = 1 then 1 j̄ (t) = 1
(since Sm(t) > Sj (t) for all t ≥ τ1 and the decision maker
observes either the K cells with the top K highest sum LLRs
or those with the second to the (K + 1)th highest sum LLRs).
Hence, N ≤ N . Thus,

τ2∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t)

=
τ2∑

t=t0

[
�̃ j̄ 1 j̄ (t) − �̃ j 1 j (t)

]
− D( f ||g)

(
N − N

)

≤
τ2∑

t=t0

�̃ j̄ 1 j̄ (t) − �̃ j 1 j (t) (91)

Similar to (45), applying the Chernoff bound completes the
proof for this case.

Next, we upper bound the second term on the RHS of (90).
Let ε3 � ε1

4D( f ||g) > 0. Note that

Pm (DR(τ2) > ε1n, τ2 ≤ n, t0 < τ1)

≤ Pm (τ1 > ε3n)

+ Pm (DR(τ2) > ε1n, τ2 ≤ n, t0 < τ1, τ1 ≤ ε3n) .

(92)

The first term on the RHS of (92) decreases exponentially with
n by Lemma 7. Thus, it remains to show that the second term
on the RHS of (92) decreases exponentially with n. Note that
DR(τ2) > ε1n implies
⎛

⎝
τ1∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t)

⎞

⎠+
⎛

⎝
τ2∑

t=τ1+1

� j̄ 1 j̄ (t) − � j 1 j (t)

⎞

⎠ > ε1n.

Therefore, the second term on the RHS of (92) can be
rewritten as:

Pm (DR(τ2) > ε1n, τ2 ≤ n, t0 < τ1, τ1 ≤ ε3n)

≤ Pm

(
τ1∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t) >
ε1n

2
,

τ2 ≤ n, t0 < τ1, τ1 ≤ ε3n

)

+ Pm

⎛

⎝
τ2∑

t=τ1+1

� j̄ 1 j̄ (t) − � j 1 j (t) >
ε1n

2
,

τ2 ≤ n, t0 < τ1, τ1 ≤ ε3n

⎞

⎠ (93)

Note that for all t0 <τ1+1 ≤ t ≤ τ2, if 1 j (t)=1 then 1 j̄ (t)=1.
As a result, cell j̄ is probed more frequently between
τ1 + 1 and τ2. Thus, the second term on the RHS of (93)
decreases exponentially with n using a similar argument as
in (91). Next, it remains to show that the first term on the
RHS of (93) decreases exponentially with n. Note that

τ1∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t)

≤
τ1∑

t=t0

[
�̃ j̄ 1 j̄ (t) − �̃ j 1 j (t)

]
+ D( f ||g)τ1

≤
τ1∑

t=t0

[
�̃ j̄ 1 j̄ (t) − �̃ j 1 j (t)

]
+ ε1

4
n (94)

for all τ1 ≤ ε3n.
As a result,

τ1∑

t=t0

� j̄ 1 j̄ (t) − � j 1 j (t) >
ε1

2
n (95)

implies
τ1∑

t=t0

[
�̃ j̄ 1 j̄ (t) − �̃ j 1 j (t)

]
>

ε1

4
n (96)

for all τ1 ≤ ε3n.
Similar to (45), applying the Chernoff bound completes the

proof.
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Definition 6: The dynamic range DR j (t) for j �= m at
time t is defined as follows:

DR j (t) � max
k �=m

Sk(t) − Sj (t). (97)

Let

η�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D( f ||g)
I ∗(M,K ) log c, if K = M

log c, if K < M and I ∗(M, K ) = K D( f ||g)
M−1

D′( f ||g)
I ∗(M,K ) log c,

if K<M and I ∗(M, K )= D(g|| f ) + (K−1)D( f ||g)
M−1

(98)

where D′( f ||g) is defined in (78).
Definition 7: τ

j
3 denotes the smallest integer such that

∑n
i=τ1+1 � j (i)1 j (i) ≤ η + DR j (τ1) for j �= m for all

n ≥ τ
j

3 ≥ τ2. We also define τ3 � max j �=m τ
j

3 .
Note that τ

j
3 ≥ τ2 by definition (i.e., both τ2 has passed and

the inequality holds for all n ≥ τ
j

3 ).
Remark 2: Using some algebraic manipulations, it can be

verified that 	Sm, j (n) ≥ − log c for all j �= m for all
n ≥ τ

j
3 . Since τ3 = max j �=m τ

j
3 we have 	S(n) = Sm(n) −

Sm(2)(n)(n) ≥ − log c for all n ≥ τ3. It should be noted that τ3
depends on the future and is not a stopping time. The decision
maker does not know whether it has arrived. However, it is
used to upper bound the actual stopping time under DGF. Note
that the stopping time under DGF stops the sampling once
	S(n) ≥ − log c first occurs. If 	S(n) ≥ − log c first occurs
once τ3 occurs, then τ = τ3. Otherwise, τ < τ3.

Definition 8: n3 � τ3 −τ2 denotes the total amount of time
between τ2 and τ3.

Lemma 10: Assume that the DGF policy is implemented
indefinitely. Then, for every fixed ε > 0 there exist C > 0
and γ > 0 such that

Pm (n3 > n) ≤ Ce−γ n ∀n > −ε log c/I ∗(M, K ), (99)

for all m = 1, 2, . . . , M .
Proof: Let N j

3 for j �= m denote the total number of
observations, taken from cell j between τ2 and τ

j
3 . Note that

n3 ≤ ∑
j �=m N j

3 . Thus, it suffices to show that Pm

(
N j

3 > n
)

decreases exponentially with n. Note that

Pm

(
N j

3 > n
)

≤ Pm

(

DR(τ2) > n
D( f ||g)

2

)

+Pm

(

N j
3 > n | DR(τ2) ≤ n

D( f ||g)

2

)

. (100)

By Lemma 9, the first term on the RHS of (100) decreases
exponentially with n for all n > −ε log c/I ∗(M, K ). Thus, it
remains to show that the second term on the RHS of (100)
decreases exponentially with n.

Let t1, t2, . . . denote the time indices when cell j is observed
between τ2 and τ

j
3 . Since τ2 has occurred and DR(τ2) ≤

n D( f ||g)
2 , τ

j
3 occurs once

∑r
i=1 −� j (ti ) ≥ n D( f ||g)

2 holds for

all r ≥ N j
3 . As a result,

Pm

(

N j
3 > n | DR(τ2) ≤ n

D( f ||g)

2

)

≤ Pm

(

inf
r>n

r∑

i=1

−� j (ti ) < n
D( f ||g)

2

)

≤
∞∑

r=n

Pm

(
r∑

i=1

�̃ j (ti ) > r
D( f ||g)

2

)

. (101)

Thus, it suffices to show that there exists γ > 0 such that
Pm

(∑n
i=1 �̃ j (ti ) > n D( f ||g)

2

)
≤ e−γ n . Applying the Chernoff

bound and using the i.i.d. property of �̃ j (ti ) completes the
proof.

Lemma 11: The expected detection time τ under the DGF
policy is upper bounded by:

Em(τ ) ≤ − (1 + o(1))
log(c)

I ∗(M, K )
, (102)

for m = 1, . . . , M .
Proof: Note that τ ≤ τ3 = τ1 + n2 + n3. Thus, combining

Lemmas 7, 8 and 10 completes the proof.
Combining Lemmas 5, 11 and Theorem 5 yields the

asymptotic optimality property of the DGF policy, presented
in Theorem 1.

B. Proof of Theorem 2

Following the same argument as in [5], it suffices to show
that Pm (τ1 > n) decreases polynomially with n to prove the
theorem. Since D(g|| f ) > 0, the KL divergence between the
true hypothesis m and any false hypothesis j �= m is strictly
positive under any observed cell. For the ease of presentation,
consider the case where K = 1. In the case where D(g|| f ) ≥
D( f ||g)/(M − 1), the Chernoff test selects m(1)(n) for all n.
As a result, exponential decay of Pm (τ1 > n) follows directly
from Lemma 7. In the case where D(g|| f )< D( f ||g)/(M−1),
the Chernoff test selects m j (n) for j �= 1 randomly for all n.
As a result, polynomial decay of Pm (τ1 > n) follows by a
similar argument as in [5] for the extended Chernoff test.
Note that the proof directly applies to the case where K > 1
since Pm(τ1 > n) decreases as the number K of observations
collected at a time increases. �

C. Proof of Theorem 3

The proof follows a similar line of arguments as in the
proof of Theorem 1. Hence, we provide here only a sketch of
the proof. First, similar to Lemma 5, it can be verified that
declaring the target locations once Sm(L) − Sm(L+1) ≥ − log c
occurs achieves an error probability O(c). Second, similar to
Lemma 11, it can be verified that the detection time approaches

− log c/I ∗(M, K ). For example, if D(g|| f )
L ≥ D( f ||g)

M−L and
K ≥ L then all the L targets and a fraction r = K−L

M−L of
the false hypotheses are observed at each given time in the
asymptotic regime. Therefore, the detection time approaches

− log c
D(g|| f )+r D( f ||g)) . Similar arguments apply to the rest of the
cases. �
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D. Proof of Theorem 4

The proof follows a similar line of arguments as in the
proofs of Theorems 1 and 3. Hence, we provide only a sketch
of the proof. With minor modifications to Theorem 3, it can
be verified that (29) is the asymptotic lower bound on the
Bayes risk when the number of targets � is known, K = 1
and (23) holds. Similar to Lemma 5, it can be verified that
declaring a target once Sm(n) ≥ − log c occurs achieves an
error probability O(c). Following a similar argument as in
Lemma 7, it can be verified that the � targets are tested before
testing the M − � normal processes with high probability in
the asymptotic regime. Since the decision maker declares the
target locations once Sm(n) ≥ − log c for any m, the Bayes
risk approaches (29) as c → 0. �

REFERENCES

[1] H. Chernoff, “Sequential design of experiments,” Ann. Math. Statist.,
vol. 30, no. 3, pp. 755–770, 1959.

[2] A. Wald, Sequential Analysis. New York, NY, USA: Wiley, 1947.
[3] S. A. Bessler, “Theory and applications of the sequential design

of experiments, k-actions and infinitely many experiments:
Part I—Theory,” Appl. Math. Statist. Lab., Stanford Univ., Stanford,
CA, USA, Tech. Rep. 55, 1960.

[4] S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing
for hypothesis testing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Mar. 2012, pp. 5277–5280.

[5] S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing for
multihypothesis testing,” IEEE Trans. Autom. Control, vol. 58, no. 10,
pp. 2451–2464, Oct. 2013.

[6] S. Nitinawarat and V. V. Veeravalli. (2013). “Controlled
sensing for sequential multihypothesis testing with controlled
Markovian observations and non-uniform control cost.” [Online].
Available: http://arxiv.org/abs/1310.1844

[7] M. Naghshvar and T. Javidi, “Active sequential hypothesis testing,” Ann.
Statist., vol. 41, no. 6, pp. 2703–2738, 2013.

[8] M. Naghshvar and T. Javidi, “Sequentiality and adaptivity gains in active
hypothesis testing,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 5,
pp. 768–782, Oct. 2013.

[9] K. S. Zigangirov, “On a problem in optimal scanning,” Theory Probab.
Appl., vol. 11, no. 2, pp. 294–298, 1966.

[10] E. M. Klimko and J. Yackel, “Optimal search strategies for Wienér
processes,” Stochastic Processes Appl., vol. 3, no. 1, pp. 19–33, 1975.

[11] V. Dragalin, “A simple and effective scanning rule for a multi-channel
system,” Metrika, vol. 43, no. 1, pp. 165–182, 1996.

[12] L. D. Stone and J. A. Stanshine, “Optimal search using uninterrupted
contact investigation,” SIAM J. Appl. Math., vol. 20, no. 2, pp. 241–263,
1971.

[13] K. P. Tognetti, “An optimal strategy for a whereabouts search,” Oper.
Res., vol. 16, no. 1, pp. 209–211, 1968.

[14] J. B. Kadane, “Optimal whereabouts search,” Oper. Res., vol. 19, no. 4,
pp. 894–904, 1971.

[15] Y. Zhai and Q. Zhao, “Dynamic search under false alarms,” in
Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Dec. 2013,
pp. 201–204.

[16] D. A. Castanon, “Optimal search strategies in dynamic hypoth-
esis testing,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 7,
pp. 1130–1138, Jul. 1995.

[17] Y. Li, S. Nitinawarat, and V. V. Veeravalli. (2013). “Universal outlier
hypothesis testing.” [Online]. Available: http://arxiv.org/abs/1302.4776

[18] H. Li, “Restless watchdog: Selective quickest spectrum sensing in
multichannel cognitive radio systems,” EURASIP J. Adv. Signal Process.,
vol. 2009, p. 417457, Sep. 2009.

[19] O. Hadjiliadis, H. Zhang, and H. Vincent Poor, “One shot schemes
for decentralized quickest change detection,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 3346–3359, Jul. 2009.

[20] Q. Zhao and J. Ye, “Quickest detection in multiple on–off processes,”
IEEE Trans. Signal Process., vol. 58, no. 12, pp. 5994–6006, Dec. 2010.

[21] V. Raghavan and V. V. Veeravalli, “Quickest change detection of a
Markov process across a sensor array,” IEEE Trans. Inf. Theory, vol. 56,
no. 4, pp. 1961–1981, Apr. 2010.

[22] L. Lai, H. Vincent Poor, Y. Xin, and G. Georgiadis, “Quickest search
over multiple sequences,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5375–5386, Aug. 2011.

[23] M. L. Malloy, G. Tang, and R. D. Nowak, “Quickest search for a
rare distribution,” in Proc. 46th Annu. Conf. Inf. Sci. Syst., Mar. 2012,
pp. 1–6.

[24] M. L. Malloy and R. D. Nowak. (2012). “Sequential testing for sparse
recovery.” [Online]. Available: http://arxiv.org/abs/1212.1801

[25] A. Tajer and H. Vincent Poor, “Quick search for rare events,” IEEE
Trans. Inf. Theory, vol. 59, no. 7, pp. 4462–4481, Jul. 2013.

[26] E. Bayraktar and L. Lai. (2013). “Byzantine fault tolerant
distributed quickest change detection.” [Online]. Available:
http://arxiv.org/abs/1306.2086

[27] R. Caromi, Y. Xin, and L. Lai, “Fast multiband spectrum scanning
for cognitive radio systems,” IEEE Trans. Commun., vol. 61, no. 1,
pp. 63–75, Jan. 2013.

[28] K. Cohen, Q. Zhao, and A. Swami, “Optimal index policies for quickest
localization of anomaly in cyber networks,” in Proc. IEEE Global Conf.
Signal Inf. Process. (GlobalSIP), Dec. 2013, pp. 221–224.

[29] H. Zhang, O. Hadjiliadis, T. Schäfer, and H. Vincent Poor, “Quickest
detection in coupled systems,” SIAM J. Control Optim., vol. 52, no. 3,
pp. 1567–1596, 2014.

[30] K. Cohen, Q. Zhao, and A. Swami, “Optimal index policies for anomaly
localization in resource-constrained cyber systems,” IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 4224–4236, Aug. 2014.

[31] K. Cohen and Q. Zhao. (2014). “Asymptotically optimal
anomaly detection via sequential testing.” [Online]. Available:
http://arxiv.org/abs/1405.4659

[32] K. Cohen and Q. Zhao, “Anomaly detection over independent processes:
Switching with memory,” in Proc. 52nd Annu. Allerton Conf. Commun.,
Control, Comput., Oct. 2014.

[33] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. New York,
NY, USA: Springer-Verlag, 2012.

Kobi Cohen received the B.Sc.(cum laude) and Ph.D. degrees in electrical
engineering from Bar-Ilan University, Ramat Gan, Israel, in 2007 and 2013,
respectively. He is currently a postdoctoral research associate at the
Coordinated Science Laboratory at the University of Illinois at
Urbana-Champaign. From 2012 to 2014, he was with the Department
of Electrical and Computer Engineering at the University of California,
Davis, as a postdoctoral researcher. His main research interests include
decision theory, stochastic optimization, game theory and statistical inference,
with applications in large-scale systems, and wireless and wireline networks.

Qing Zhao (F’13) received the Ph.D. degree in Electrical Engineering in
2001 from Cornell University, Ithaca, NY. In August 2004, she joined the
Department of Electrical and Computer Engineering at University of Califor-
nia, Davis, where she is currently a Professor. She is also a Professor with the
Graduate Group of Applied Mathematics at UC Davis. Her research interests
are in the general area of stochastic optimization, decision theory, machine
learning, and algorithmic theory in dynamic systems and communication and
social-economic networks. Qing Zhao is a Fellow of IEEE. She received
the 2010 IEEE Signal Processing Magazine Best Paper Award and the 2000
Young Author Best Paper Award from the IEEE Signal Processing Society.
She holds the title of UC Davis Chancellor’s Fellow and received the 2014
Outstanding Mid-Career Faculty Research Award and the 2008 Outstanding
Junior Faculty Award from the UC Davis College of Engineering. She was a
plenary speaker at the 11th IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), 2010. She is also a co-author of
two papers that received student paper awards at ICASSP 2006 and the
IEEE Asilomar Conference 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


